Table of Contents

vSphere Administrator

1.1 Deployment Prerequisites

1.1.1 Virtual Infrastructure Requirements

1.1.1.1 Networking Requirements

1.1.1.2 Certificate Requirements

1.1.1.3 Appliance Certificate Requirements

1.1.1.3.1 VCH Certificate Requirements

1.1.1.3.2 Obtain vSphere Thumbprints

1.1.1.4 Interoperability

1.1.2 Installation

1.1.2.1 Download Installer

1.1.2.2 Deploy the Appliance

1.1.2.2.1 Deploy the Appliance Using VMware OVF Tool

1.1.2.2.2 Appliance Registration API

1.1.2.3 Download Engine Bundle

1.1.3 VCH Deployment

1.1.3.1 Using vic-machine

1.1.3.1.1 Set Environment Variables

1.1.3.2 Open the Required Ports on ESXi Hosts

1.1.3.3 Create the Operations User

1.1.3.3.1 Manually Create Operations User

1.1.3.4 Deploy VCHs in vSphere Client

1.1.3.5 VCH Deployment Options

1.1.3.5.1 General Settings

1.1.3.5.2 Compute Capacity

1.1.3.5.3 Storage Capacity

1.1.3.5.3.1 Image Datastore

1.1.3.5.3.2 Volume Datastores

1.1.3.5.4 Networks

1.1.3.5.4.1 Bridge Networks

1.1.3.5.4.2 Public Network

1.1.3.5.4.3 Client Network

1.1.3.5.4.4 Management Network
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade VCHs</td>
<td>1.1.5.3</td>
</tr>
<tr>
<td>VCH Upgrade Options</td>
<td>1.1.5.3.1</td>
</tr>
<tr>
<td>Backup and Restore</td>
<td>1.1.6</td>
</tr>
<tr>
<td>Appliance</td>
<td>1.1.6.1</td>
</tr>
<tr>
<td>VCHs</td>
<td>1.1.6.2</td>
</tr>
<tr>
<td>Container Volumes</td>
<td>1.1.6.3</td>
</tr>
<tr>
<td>Backing Up VMDK Volumes</td>
<td>1.1.6.3.1</td>
</tr>
<tr>
<td>Restoring VMDK Volumes</td>
<td>1.1.6.3.2</td>
</tr>
<tr>
<td>Manage the Appliance</td>
<td>1.1.7</td>
</tr>
<tr>
<td>Reconfigure the Appliance</td>
<td>1.1.7.1</td>
</tr>
<tr>
<td>Obtain Appliance Certificates</td>
<td>1.1.7.2</td>
</tr>
<tr>
<td>Change Appliance TLS Certificates</td>
<td>1.1.7.3</td>
</tr>
<tr>
<td>Reinitialize the Appliance</td>
<td>1.1.7.4</td>
</tr>
<tr>
<td>Re-Tag the Appliance</td>
<td>1.1.7.4.1</td>
</tr>
<tr>
<td>Update PSC Registration</td>
<td>1.1.7.5</td>
</tr>
<tr>
<td>Check Service Status</td>
<td>1.1.7.6</td>
</tr>
<tr>
<td>Restart Services</td>
<td>1.1.7.7</td>
</tr>
<tr>
<td>Recover Appliance Password</td>
<td>1.1.7.8</td>
</tr>
<tr>
<td>Uninstall</td>
<td>1.1.7.9</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>1.1.8</td>
</tr>
<tr>
<td>Access Logs</td>
<td>1.1.8.1</td>
</tr>
<tr>
<td>Access and Configure Appliance Logs</td>
<td>1.1.8.1.1</td>
</tr>
<tr>
<td>Access VCH Logs</td>
<td>1.1.8.1.2</td>
</tr>
<tr>
<td>Appliance Deployment</td>
<td>1.1.8.2</td>
</tr>
<tr>
<td>Appliance Boot Errors</td>
<td>1.1.8.2.1</td>
</tr>
<tr>
<td>Appliance OVF Error</td>
<td>1.1.8.2.2</td>
</tr>
<tr>
<td>Registry Services Do Not Start</td>
<td>1.1.8.2.3</td>
</tr>
<tr>
<td>Appliance VM Password Refused</td>
<td>1.1.8.2.4</td>
</tr>
<tr>
<td>Browser Rejects Certificates</td>
<td>1.1.8.2.5</td>
</tr>
<tr>
<td>Registration with PSC Fails</td>
<td>1.1.8.2.6</td>
</tr>
<tr>
<td>Appliance Initialization Errors</td>
<td>1.1.8.2.7</td>
</tr>
<tr>
<td>Access to Management Portal Fails</td>
<td>1.1.8.2.8</td>
</tr>
<tr>
<td>Appliance Running Errors</td>
<td>1.1.8.2.9</td>
</tr>
<tr>
<td>Appliance Welcome Page Error</td>
<td>1.1.8.2.10</td>
</tr>
<tr>
<td>Plug-In Does Not Appear</td>
<td>1.1.8.3</td>
</tr>
<tr>
<td>VCH Deployment</td>
<td>1.1.8.4</td>
</tr>
<tr>
<td>Issue</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Firewall Validation Error</td>
<td>1.1.8.4.1</td>
</tr>
<tr>
<td>VCH Deployment Times Out</td>
<td>1.1.8.4.2</td>
</tr>
<tr>
<td>Certificate Verification Error</td>
<td>1.1.8.4.3</td>
</tr>
<tr>
<td>Missing Common Name Error Even When TLS Options Are Specified Correctly</td>
<td>1.1.8.4.4</td>
</tr>
<tr>
<td>Certificate cname Mismatch</td>
<td>1.1.8.4.5</td>
</tr>
<tr>
<td>Docker API Endpoint Check Failed Error</td>
<td>1.1.8.4.6</td>
</tr>
<tr>
<td>No Single Host Can Access All Datastores</td>
<td>1.1.8.4.7</td>
</tr>
<tr>
<td>VCH Does Not Initialize Correctly</td>
<td>1.1.8.4.8</td>
</tr>
<tr>
<td>Post-Deployment Operation</td>
<td>1.1.8.5</td>
</tr>
<tr>
<td>Certificate and PSC Token Errors</td>
<td>1.1.8.5.1</td>
</tr>
<tr>
<td>Some Users Cannot Access Services</td>
<td>1.1.8.5.2</td>
</tr>
<tr>
<td>Default Volume Store Error</td>
<td>1.1.8.5.3</td>
</tr>
<tr>
<td>Deleting or Inspecting a VCH Fails</td>
<td>1.1.8.5.4</td>
</tr>
<tr>
<td>Docker Login Fails</td>
<td>1.1.8.5.5</td>
</tr>
<tr>
<td>Image Store Error</td>
<td>1.1.8.5.6</td>
</tr>
<tr>
<td>Deployment of Container that supports DHCP Network Fails</td>
<td>1.1.8.5.7</td>
</tr>
<tr>
<td>Install Packages in VCHs</td>
<td>1.1.8.6</td>
</tr>
<tr>
<td>Mount an NFS Share Point</td>
<td>1.1.8.6.1</td>
</tr>
<tr>
<td>Troubleshoot Upgrade Operation</td>
<td>1.1.8.7</td>
</tr>
<tr>
<td>Certificates Not Copied</td>
<td>1.1.8.7.1</td>
</tr>
<tr>
<td>Container VMs Orphaned</td>
<td>1.1.8.7.2</td>
</tr>
<tr>
<td>Security Reference</td>
<td>1.1.9</td>
</tr>
<tr>
<td>vic-machine Options Reference</td>
<td>1.1.10</td>
</tr>
</tbody>
</table>
vSphere Integrated Containers for vSphere Administrators

vSphere Integrated Containers for vSphere Administrators provides information about how vSphere administrators install, deploy, and maintain the VMware vSphere® Integrated Containers™ infrastructure.

Product version: 1.5
This documentation applies to all 1.5.x releases.

Intended Audience

This information is intended for VMware vSphere® administrators who install and set up vSphere Integrated Containers. The information is written for experienced vSphere administrators who are familiar with virtual machine technology and datacenter operations. Knowledge of container technology and Docker is useful.

Copyright © 2016-2019 VMware, Inc. All rights reserved. Copyright and trademark information. Any feedback you provide to VMware is subject to the terms at www.vmware.com/community_terms.html.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304

www.vmware.com
Deployment Prerequisites for vSphere Integrated Containers

Before you deploy the vSphere Integrated Containers appliance and virtual container hosts (VCHs), you must ensure that the environment in which you are deploying them meets the deployment prerequisites.

vSphere Integrated Containers has particular infrastructure and networking requirements. In addition, if you intend to use custom certificates with vSphere Integrated Containers, these certificates must be configured in a particular way.

- Virtual Infrastructure Requirements
- Networking Requirements
- vSphere Integrated Containers Certificate Requirements
- Interoperability with Other VMware Software
Virtual Infrastructure Requirements

You must ensure that the vCenter Server instance and ESXi hosts on which you are deploying the vSphere Integrated Containers appliance and virtual container hosts (VCHs) meet certain requirements.

License Requirements

vSphere Integrated Containers depends on certain features that are included in the following vSphere Editions:

- vSphere Enterprise Plus
- vSphere Remote Office Branch Office (ROBO) Advanced

All of the ESXi hosts in a cluster require an appropriate license. Deployment of VCHs fails if your environment includes one or more ESXi hosts that have inadequate licenses.

vSphere Integrated Containers Appliance Requirements

You deploy the vSphere Integrated Containers appliance on a vCenter Server instance. Deploying the appliance directly on an ESXi host is not supported.

- vCenter Server 6.0, 6.5, 6.7, 6.7 update 1, or 6.7 update 2.
- ESXi 6.0, 6.5, or 6.7 for all hosts.
- At least 2 vCPUs.
- At least 8GB RAM.
- At least 80GB free disk space on the datastore. The disk space for the appliance uses thin provisioning.

For the latest information about the compatibility of all vSphere Integrated Containers versions with vCenter Server, see the VMware Product Interoperability Matrices.

vSphere Client Requirements

vSphere Integrated Containers provides an interactive plug-in for the HTML5 vSphere Client and a basic plug-in for the Flex-based vSphere Web Client:

- The HTML5 plug-in for vSphere 6.5 and 6.7 allows you to deploy and interact with VCHs from the vSphere Client. The HTML5 vSphere Client plug-in for vSphere Integrated Containers requires vCenter Server 6.7 or vCenter Server 6.5.0d or later.
- The Flex-based plug-in for vSphere 6.0 has limited functionality and only provides basic information about VCHs and container VMs.

Supported Configurations for VCH Deployment

You can deploy VCHs in the following types of setup:
vCenter Server 6.0, 6.5, 6.7, 6.7 update 1, or 6.7 update 2, managing a cluster of ESXi 6.0, 6.5, or 6.7 hosts. VMware recommends that you enable VMware vSphere Distributed Resource Scheduler (DRS) on clusters whenever possible, but this is not a requirement.

vCenter Server 6.0, 6.5, 6.7, 6.7 update 1, or 6.7 update 2, managing one or more standalone ESXi 6.0, 6.5, or 6.7 hosts.

Standalone ESXi 6.0, 6.5, or 6.7 host that is not managed by a vCenter Server instance.

Caveats and limitations:

- VMware does not support the use of nested ESXi hosts, namely running ESXi in virtual machines. Deploying vSphere Integrated Containers Engine to a nested ESXi host is acceptable for testing purposes only.
- If you deploy a VCH onto an ESXi host that is not managed by vCenter Server, and you then move that host into a cluster, the VCH might not function correctly.
- Clusters that do not implement DRS do not support resource pools. If you deploy a VCH to a cluster on which DRS is disabled, the VCH is created in a VM folder, rather than in a resource pool. This restricts your ability to configure resource usage limits on the VCH.

ESXi Host Firewall Requirements

To be valid targets for VCHs and container VMs, ESXi hosts must have the following firewall configuration:

- Allow outbound TCP traffic to port 2377 on the endpoint VM, for use by the interactive container shell.
- Allow inbound HTTPS/TCP traffic on port 443, for uploading to and downloading from datastores.

These requirements apply to standalone ESXi hosts and to ESXi hosts in vCenter Server clusters.

For information about how to open ports on ESXi hosts, see Open the Required Ports on ESXi Hosts.

ESXi Host Storage Requirements for vCenter Server Clusters

All ESXi hosts in vCenter Server clusters must meet the following storage requirements in order to be usable by a VCH:

- Be attached to the datastores that you will use for image stores and volume stores.
- Have access to shared storage to allow VCHs to use more than one host in the cluster.

For information about image stores and volumes stores, see Virtual Container Host Storage.

Clock Synchronization

Ensure that all vCenter Server instances and ESXi hosts in the environment in which you are deploying the appliance have network time protocol (NTP) running. Running NTP prevents problems arising from clock skew between the vSphere Integrated Containers appliance, virtual container hosts, and the vSphere infrastructure.
User Accounts for VCH Deployment and Operation

A VCH requires the appropriate permissions in vSphere to perform tasks during VCH deployment and operation. Deployment of a VCH requires a user account with vSphere administrator privileges. However, day-to-day operation of a VCH requires fewer vSphere permissions than deployment. Consequently, you can configure a VCH to use different user accounts for deployment and for day-to-day operation. If you choose to use different accounts, the user account to use for day-to-day operation must exist before you deploy the VCH. For information about the operations user, see Create the Operations User Account.
Networking Requirements

The vSphere Integrated Containers appliance and virtual container hosts (VCHs) have specific network requirements.

Appliance Networking Requirements

The vSphere Integrated Containers appliance requires access to the external Internet, the vSphere Infrastructure, and to the network on which developers connect Docker clients. You can deploy the vSphere Integrated Containers appliance to a standard network, an NSX Data Center for vSphere network, or to an NSX-T Data Center network.

Understanding Docker and VCH Networking

To understand how you can configure networks on VCHs, you first must understand how networking works in Docker.

For an overview of Docker networking in general, and an overview of networking with vSphere Integrated Containers in particular, watch the Docker Networking Options and vSphere Integrated Containers Networking Overview videos on the VMware Cloud-Native YouTube Channel:

https://www.youtube.com/watch?v=Yr6-2ddhLVo
https://www.youtube.com/watch?v=QLi9KasWLCM

See also Docker container networking in the Docker documentation.

Networking Requirements for VCH Deployment

VCHs connect to multiple different networks, as shown in the image below.
Each VCH requires an IPv4 address on each of the networks that it is connected to. The bridge network is handled internally, but other networks must have a static IP configured on them, or be able to acquire one via DHCP.

Network interfaces for VCHs can be of the following types:

- Standard vSphere port groups that you create on vSphere Distributed Switches
- NSX Data Center for vSphere logical switches
- NSX-T Data Center logical switches.

You must create port groups or logical switches in the vSphere Client, NSX Manager, or NSX-T Manager before you deploy a VCH. If you use NSX Data Center for vSphere or NSX-T Data Center logical switches, these logical switches must be available in the vCenter Server instance on which you deploy the VCHs.

You can use a mixture of port groups, NSX Data Center for vSphere logical switches, and NSX-T Data Center logical switches for the different VCH networks.

vSphere Port Groups

For information about how to create vSphere Distributed Switches and port groups, and how to add hosts to the vSphere Distributed Switches, see the following topics in the vSphere documentation:

- Create a vSphere Distributed Switch
- Add Hosts to a vSphere Distributed Switch

NSX Data Center for vSphere Logical Switches
You make NSX Data Center for vSphere logical switches available to vCenter Server by registering vCenter Server with NSX Manager.

For information about how to register vCenter Server or ESXi hosts with NSX Manager, prepare hosts and clusters, and how to create logical switches, see the following sections in the NSX Data Center for vSphere documentation:

- NSX Data Center for vSphere Installation Guide
- Add a Logical Switch

NSX-T Data Center Logical Switches

You make NSX-T Data Center logical switches available to vCenter Server by adding the hosts or clusters that vCenter Server manages to the management plane in NSX-T Manager. NSX-T administrators can apply security groups and policies to these logical switches.

For information about how to add hosts or clusters to the management plane and create NSX-T Data Center logical switches, see the following sections in the NSX-T Data Center documentation:

- NSX-T Data Center Installation Guide
- Create a Logical Switch

NOTE: If you use NSX-T Data Center logical switches, it is not mandatory for T1 or T0 routers to be present. The bridge network does not use layer 3, so does not require T1 and T0 routers. For container networks, you might need a T1 router, for example to bridge overlay and underlay networks.

VCH Networks

You can direct traffic between containers, the VCH, the external Internet, and your vSphere environment to different networks. Some networks require a dedicated network interface. Other networks can share a network interface.

IMPORTANT:

- If you configure a VCH to use different networks for each of the public, management, and client networks, these networks must all be accessible by the vSphere Integrated Containers appliance.
- All of the hosts in a cluster should be attached to the port groups or logical switches that you create for the VCH networks and for any mapped container networks.

Bridge Networks

Each VCH requires a unique network interface for use as the bridge network. You cannot share this network between multiple VCHs. When deploying VCHs directly to ESXi Server hosts, by default vic-machine creates a port group for the bridge network. When deploying VCHs to vCenter Server, you must create a network interface for use as the bridge network before you deploy the VCH.

If you use standard networks, create a VMware vSphere Distributed Switch, and create a dedicated port group for use as the bridge network for each VCH. You can create multiple port groups on the same switch, but each VCH requires its own unique port group for the bridge network.
If you use NSX Datacenter for vSphere or NSX-T Data Center networks, create a logical switch for use as the bridge network for each VCH. Each VCH requires its own unique logical switch for the bridge network.

For information about bridge networks, see Configure Bridge Networks.

Public Network

Each VCH requires access to at least one network interface for use as the public network. The public network is the network over which VCHs connect to the Internet, so it must have external Internet access. You can share this network between multiple VCHs. The public network does not need to be trusted.

Create either a standard vSphere port group or an NSX Datacenter for vSphere or NSX-T Data Center logical switch for use as the VCH public network. The VCH endpoint VM must be able to obtain an IP address on this network. You can use the same network as the public network for multiple VCHs. You cannot use the same network for the public network as you use for the bridge network.

- If you use the Create Virtual Container Host wizard to create VCHs, it is mandatory to use a dedicated network interface for the public network.
- If you use vic-machine to deploy VCHs, by default the VCH uses the VM Network, if present, for the public network. If the VM Network is present, it is therefore not mandatory to use a dedicated network interface for the public network, but it is strongly recommended. Using the default VM Network for the public network instead of a dedicated network interface prevents vSphere vMotion from moving the VCH endpoint VM between hosts in a cluster. If the VM Network is not present, you must create a network interface for the public network.

You can share the public network with the client and management networks. For information about VCH public networks, see Configure the Public Network.

Client and Management Networks

Optionally create either a standard vSphere port group or an NSX Datacenter for vSphere or NSX-T Data Center logical switch for each of the management and client networks. You can use the same network as the management and client network for multiple VCHs. Use a trusted network for the management network. Connections between Docker clients and the VCH are encrypted via TLS unless you explicitly disable TLS. The client network does not need to be trusted.

IMPORTANT: The network on which you run vic-machine commands must be able to communicate with the client network on the VCH. The client interface must be able to route back to the machine on which you run vic-machine commands.

For information about VCH client and management networks, see Configure the Client Network and Configure the Management Network.

Container Networks

Optionally create standard vSphere port groups or NSX Datacenter for vSphere or NSX-T Data Center logical switches for use as mapped container networks. For information about container networks, see Configure Container Networks.
Network Isolation

Isolate the bridge network and any mapped container networks. If you use standard networks, you can isolate networks by using a separate VLAN for each network. For information about how to assign a VLAN ID to a port group, see VMware KB 1003825. For more information about private VLAN, see VMware KB 1010691.

If you use NSX Data Center for vSphere or NSX-T Data Center logical switches for the bridge and container networks, these networks are isolated by default.

Ports and Protocols

The image below shows detailed information how different entities that are part of a vSphere Integrated Containers environment communicate with each other.
vSphere Integrated Containers Certificate Requirements

vSphere Integrated Containers secures the connections between its different components, with the vSphere infrastructure, and with the Docker development environment by using TLS certificates.

The different components have different certificate requirements. You can opt for vSphere Integrated Containers to automatically generate all of the required certificates. Alternatively, you can upload your own custom certificates during the deployment of the vSphere Integrated Containers appliance and virtual container hosts (VCHs). If you use custom certificates for any of the components, these certificates must exist before deployment, and must meet certain criteria.

This diagram shows a simplified view of the certificates that are required and used by the different vSphere Integrated Containers components and their respective users.

For more information about appliance certificates, see [vSphere Integrated Containers Appliance Certificate Requirements](#). For more information about VCH certificates, see [Virtual Container Host Certificate Requirements](#).

About TLS Certificates

A TLS certificate is made up of two parts:

- A public certificate part, that is distributed to anyone who needs it
- A private key part, that is kept secret

Paired certificate and key files follow general naming conventions:

- `cert.pem` and `key.pem`
- `<prefix>.pem` and `<prefix>-key.pem`
- `<prefix>-cert.pem` and `<prefix>-key.pem`

vSphere Integrated Containers Appliance Certificate Requirements

vSphere Integrated Containers authenticates connections between its various components by using TLS certificates. In some cases, the certificates are always automatically generated and self-signed. In other cases, you have the option of providing custom certificates.

IMPORTANT: The certificate requirements for the appliance and for virtual container hosts (VCHs) are different. For information about how VCHs use certificates, see Virtual Container Host Certificate Requirements.

Overview of vSphere Integrated Containers Appliance Certificate Use

This diagram shows how the vSphere Integrated Containers appliance uses certificates to authenticate connections between the different components. The diagram shows a deployment in which verification of client certificates is enabled on virtual container hosts (VCHs).

The sections below describe the purpose and requirements of each of the certificates shown in the diagram.

vSphere Integrated Containers Appliance Certificate
vCenter Server verifies the vSphere Integrated Containers appliance certificate to authenticate connections to Management Portal, Registry, and the file server during initialization.

Browsers verify vSphere Integrated Containers appliance certificate to access vSphere Integrated Containers Management Portal, Getting Started page, vSphere Integrated Containers Engine download, and so on.

- **Type**: Self-signed or custom
- **Format**: Supports unencrypted PEM encoded PKCS#1 and unencrypted PEM encoded PKCS#8 formats for TLS private keys. If you provide a PKCS#1 format certificate, vSphere Integrated Containers converts it to PKCS#8 format.
- **Used by**: vSphere administrator, Management Portal administrators, DevOps administrators, developers

Authenticates connections from browsers to vSphere Integrated Containers Management Portal, the Getting Started page, downloads of vSphere Integrated Containers Engine binaries, and the installation of vSphere Client plug-ins. Also authenticates the Management Portal, Registry, and file server connections with vCenter Server during initialization of the appliance. The appliance uses a single TLS certificate for all of the services that run in the appliance.

To use a certificate that uses a chain of intermediate CAs, create a certificate chain PEM file that includes a chain of the intermediate CAs all the way down to the root CA. For examples of how to provide a custom certificate to the appliance during deployment, see [Deploy the vSphere Integrated Containers Appliance](#).

For information about where to obtain auto-generated appliance certificates after deployment, see [Obtain the Thumbprints and CA Files of the vSphere Integrated Containers Appliance Certificates](#) and [Verify and Trust vSphere Integrated Containers Appliance Certificates](#).

vSphere Integrated Containers Registry Root CA

VCHs require the registry root CA to pull images from vSphere Integrated Containers Registry.

Docker Engine requires registry root CA to push and pull images to and from vSphere Integrated Containers Registry.

- **Type**: Self-signed
- **Format**: Auto-generated `.pem` file
- **Used by**: Management Portal administrators, DevOps administrators, developers

Authenticates connections to vSphere Integrated Containers Registry instances from VCHs, Docker clients, replication of projects between registry instances, and registration of additional registry instances in the management portal. The registry root CA is always automatically generated. For information about how to obtain the registry certificate after deployment of the appliance, see [Configure System Settings](#).

VCH Client Certificate

vSphere Integrated Containers Management Portal uses a client certificate to authenticate with a VCH when you add it to a project.

- **Type**: Self-signed or custom
- **Format**: PKCS#12, RSA/PKCS#1, or PKCS#7 with a private key in PKCS#8 format
Used by: vSphere administrator, Management Portal administrators

For more information about the VCH client certificate, see Virtual Container Host Certificate Requirements.

vCenter Server Certificate

The vSphere Integrated Containers appliance verifies the vCenter Server certificate thumbprint during initialization. Browsers verify the vCenter Server certificate to connect to vSphere Client and access the vSphere Integrated Containers plug-in.

- **Type**: Self-signed or custom
- **Format**: See vSphere Security Certificates in the vSphere documentation
- **Used by**: vSphere administrator

You need the vCenter Server certificate thumbprint for the deployment of the appliance and the installation of the vSphere Client plug-ins. For information about how to get the thumbprint, see Obtain vSphere Certificate Thumbprints.
Virtual Container Host Certificate Requirements

Virtual container hosts (VCHs) authenticate connections from Docker API clients and vSphere Integrated Containers Management Portal by using server and client TLS certificates. This configuration is commonly referred to as `tlsverify` in documentation about containers and Docker.

IMPORTANT: The certificate requirements for VCHs and for the vSphere Integrated Containers appliance are different. For information about how the appliance uses certificates, see [vSphere Integrated Containers Appliance Certificate Requirements](#).

Certificate Usage in Docker

There are four certificates in use in a Docker `tlsverify` configuration:

- (1) A client certificate, held by the Docker client.
- (2) A server certificate, held by the server, which in a VCH is the Docker API endpoint.
- (3) A certificate authority (CA), that signs the server certificate.
- (4) Another CA, that signs the client certificate and is held by the server.

When using the Docker client, the client validates the server either by using CAs that are present in the root certificate bundle of the client system, or that container developers provide explicitly by using the `--tlscacert` option when they run Docker commands. As a part of this validation, the Common Name (CN) in the server certificate must match the name or address of the system from which the Docker client accesses the server. The server certificate must explicitly state at least one of the following in the CN:

- The FQDN of the system from which the Docker client communicates with the server
- The IP address of the system from which the Docker client communicates with the server
- A wildcard domain that matches all of the FQDNs in a specific subdomain

If the server certificate includes a wildcard domain, all of the systems in that domain can connect to the server. For an example of a domain wildcard, see https://en.wikipedia.org/wiki/Wildcard_certificate#Example.

Docker clients search for certificates in the `DOCKER_CERT_PATH` location on the system on which the Docker client is running. Docker requires certificate files to have the following names if they are to be consumed automatically from `DOCKER_CERT_PATH`:

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cert.pem, key.pem</code></td>
<td>Client certificate (1) and private key.</td>
</tr>
<tr>
<td><code>server-cert.pem, server-key.pem</code></td>
<td>Server certificate (2)</td>
</tr>
<tr>
<td><code>ca.pem</code></td>
<td>Public portion of the certificate authority that signed the server certificate (3). Allows the server to confirm that a client is authorized.</td>
</tr>
</tbody>
</table>

Certificate Usage in VCHs
When you deploy a VCH, you specify the level of security to apply to connections from Docker clients or vSphere Integrated Containers Management Portal to the Docker API endpoint in the VCH. You can set the following levels of security:

<table>
<thead>
<tr>
<th>Option</th>
<th>Security Level</th>
<th>Encrypted Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client-server authentication</td>
<td>Only verified clients can connect to VCH</td>
<td>Yes</td>
</tr>
<tr>
<td>Server authentication</td>
<td>Any client can connect to VCH</td>
<td>Yes</td>
</tr>
<tr>
<td>No authentication</td>
<td>Insecure</td>
<td>No</td>
</tr>
</tbody>
</table>

As a convenience, vSphere Integrated Containers Engine can optionally generate client (1) and server (2) certificates. It can also automatically generate one CA that signs both the server certificate (3) and signs the client certificate (4). If you use an automatically generated CA, vSphere Integrated Containers Engine uses that CA to sign both of the client and server certificates. This means that you must provide the `cert.pem`, `key.pem`, and `ca.pem` client certificate files to all container developers who need to connect Docker clients to the VCHs. If the VCH implements client authentication, you must also provide the contents of client certificate files to vSphere Integrated Containers Management Portal if you register the VCH in a project.

Rather than using an automatically generated CA, in a production deployment you would normally use custom CAs. In this case:

- The CA that signs the server certificate (3) is usually signed by a company certificate that is rooted by a public or corporate trust authority, for example Verisign.
- The CA that signs the client certificate (4) can be unique per client or group of clients. Using the same CA for a group of clients allows each client to have a unique certificate, but allows the group to be authorized as a whole. For example, you could use one CA per VCH, multiple CAs per VCH, or one CA per group of VCHs.

This diagram shows how VCHs use certificates to authenticate connections between the different components in a vSphere Integrated Containers environment. The diagram shows a deployment in which verification of client certificates is enabled on virtual container hosts (VCHs).
If you implement client authentication, you must distribute client certificates to container developers or DevOps administrators so that they can configure their Docker clients and vSphere Integrated Containers Management Portal to connect to the VCH.

- For information about how to provide client certificates to Docker clients, see Configure the Docker Client for Use with vSphere Integrated Containers.
- For information about how to provide client certificates to vSphere Integrated Containers Management Portal, see Add Container Hosts with Full TLS Authentication in vSphere Integrated Containers Management Portal Administration.

Automatically Generated Certificates
vSphere Integrated Containers Engine provides the option of automatically generating server and client certificates when you deploy a VCH. The generated certificates are functional, but they do not allow for fine control over aspects such as expiration, intermediate certificate authorities, and so on. To use more finely configured certificates, use custom certificates.

Custom Certificates

To exercise fine control over the certificates that VCHs use, you must obtain or generate custom certificates yourself before you deploy a VCH. You can create a VCH that uses a custom server certificate, for example a server certificate that has been signed by Verisign or another public root. For information about how to create custom certificates for use with Docker, see [Protect the Docker daemon socket](https://docs.docker.com/) in the Docker documentation.

You can deploy a VCH to use custom certificates in combination with auto-generated certificates, as demonstrated in the VCH security [Examples](#).

The table below shows the certificate formats that VCHs support, and the required components.

<table>
<thead>
<tr>
<th>Certificate Format</th>
<th>Required Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCS#12</td>
<td>End-entity (leaf) certificate, CA chain certificate, private key in PKCS#8 format</td>
</tr>
<tr>
<td>PKCS#7</td>
<td>End-entity certificate, private key in PKCS#8 format</td>
</tr>
<tr>
<td>RSA/PKCS#1</td>
<td>Private key in PKCS#8 format</td>
</tr>
</tbody>
</table>

IMPORTANT: PKCS#7 certificate keys do not work with `vic-machine`. For information about how to convert certificate keys to the correct format, see [Converting PKCS#7 Certificates for Use with VCHs](#).

Converting PKCS#7 Certificate Keys for Use with VCHs

VCHs do not support PKCS#7 certificate keys. You must convert PKCS#7 keys to PKCS#8 format before you can use them with VCHs.

To unwrap a PKCS#7 key for use with a VCH, run the following command:

```bash
$ openssl pkcs7 -print_certs -in cert_name.pem -out chain.pem
```

VCH Server Certificate

The VCH server certificate validates connections to the Docker API that runs in the VCH endpoint VM. The server certificate can be automatically generated, or you can provide a custom certificate.

The VCH validates the incoming client certificate by verifying the CA that signed the client certificate. The VCH uses its automatically generated CA or a CA that you upload when you deploy the VCH.

Automatically Generated Server Certificate

You can automatically generate a server certificate for the Docker API endpoint in the VCH.
You can download the automatically generated server certificate for a VCH from the vSphere Client. For information about downloading server certificates, see View All VCH and Container Information in the HTML5 vSphere Client.

For information about how to automatically generate a server certificate during VCH deployment, see the section Server Certificates in Virtual Container Host Certificate Options.

Custom Server Certificate

Custom server certificates for VCHs must meet the following requirements:

- You must use an X.509 server certificate.
- The Common Name (CN) in the server certificate must match the FQDN or IP address of the system from which the Docker client accesses the server, or a wildcard domain that matches all of the FQDNs in a specific subdomain.
- Server certificates must have the following certificate usages:
 - KeyEncipherment
 - DigitalSignature
 - KeyAgreement
 - ServerAuth
- Server keys must not be encrypted.

If you use certificates that are not signed by a trusted certificate authority, container developers might require the server certificate when they run Docker commands in --tlsverify client mode. You can download the server certificate for a VCH from the vSphere Client. For information about downloading server certificates, see View All VCH and Container Information in the HTML5 vSphere Client.

VCH Client Certificate

vSphere Integrated Containers Management Portal uses a client certificate to authenticate with the VCH when you add it to a project.

Docker client uses a client certificate to authenticate connections to the VCH.

Automatically Generated Client Certificate

VCHs accept client certificates if they are signed by a CA. You can optionally provide a custom CA to the VCH. Alternatively, you can configure a VCH so that vSphere Integrated Containers Engine creates an automatically generated CA. vSphere Integrated Containers Engine uses the CA to automatically generate and sign a single client certificate.

For information about how to automatically generate a client certificate during VCH deployment, see the section Client Certificates in Virtual Container Host Certificate Options.

NOTE: The Create Virtual Container Host wizard in the vSphere Client does not support automatically generated CA or client certificates. To use automatically generated CA and client certificates, you must use the vic-machine CLI utility to create the VCH.
Custom Client Certificate

Key usage in the v3 extensions that match the key usage chosen for the VCH server certificate:

- KeyEncipherment
- KeyAgreement
- clientAuth

You cannot download client certificates for VCHs from the vSphere Client. vSphere administrators distribute client certificates directly.

vSphere Integrated Containers Registry Root CA

VCH requires registry root CA to pull images from vSphere Integrated Containers Registry.

Docker Engine requires registry root CA to push and pull images to and from vSphere Integrated Containers Registry.

- **Type**: Self-signed
- **Format**: Auto-generated *.pem file
- **Used by**: Management Portal administrators, DevOps administrators, developers

Authenticates connections to vSphere Integrated Containers Registry instances from VCHs, Docker clients, replication of projects between registry instances, and registration of additional registry instances in the management portal. For information about how to obtain the registry certificate, see Configure System Settings.

vCenter Server or ESXi Host Certificate

VCHs verify vCenter Server certificates or ESXi host certificates during deployment and when they perform operations in the virtual infrastructure.

- **Type**: Self-signed or custom
- **Format**: See vSphere Security Certificates in the vSphere documentation
- **Used by**: vSphere administrator

Required for installation of the vSphere Client plug-ins and deployment and management of virtual container hosts (VCHs). See Obtain vSphere Certificate Thumbprints.

VCH Administration Portal Certificate

Browsers can use the VCH Admin Portal certificate to authenticate access VCH Admin Portal.

- **Type**: None, self-signed, or custom
- **Format**: *.pfx
- **Used by**: vSphere administrators

If you deploy a VCH with client and server authentication, vSphere Integrated Containers Engine generates a *.pfx certificate that you can use to authenticate connections to with the VCH Admin portal. See VCH Administration Portal.
Obtain vSphere Certificate Thumbprints

If your vSphere environment uses untrusted, self-signed certificates to authenticate connections, you must specify the thumbprint of the vCenter Server or ESXi host certificate in all vic-machine commands to deploy and manage virtual container hosts (VCHs). If your vSphere environment uses trusted certificates that are signed by a known Certificate Authority (CA), you do not need to specify the --thumbprint option. You can set the thumbprint as an environment variable. For information about setting vic-machine environment variables, see Set Environment Variables for Common vic-machine Options.

If you deploy VCHs from the vSphere Client, the Create Virtual Container Host wizard obtains the thumbprint automatically. However, you might still need to obtain the thumbprint for use in other vic-machine commands, for example vic-machine update firewall or vic-machine configure.

You can use either SSH and OpenSSL or the Platform Services Controller to obtain certificate thumbprints, either before you run vic-machine commands, or to confirm that a thumbprint in an error message is valid.

vCenter Server Appliance or ESXi Host

You can use SSH and OpenSSL to obtain the certificate thumbprint for a vCenter Server Appliance instance or an ESXi host.

1. Use SSH to connect to the vCenter Server Appliance or ESXi host as root user.

 $ ssh root@vcsa_or_esxi_host_address

2. Use openssl to view the certificate fingerprint.

 vCenter Server Appliance:

 openssl x509 -in /etc/vmware-vpx/ssl/rui.crt -fingerprint -sha1 -noout

 ESXi host:

 openssl x509 -in /etc/vmware/ssl/rui.crt -fingerprint -sha1 -noout

3. Copy the certificate thumbprint for use in the --thumbprint option of vic-machine commands or to set it as an environment variable.

Platform Services Controller

You can obtain a vCenter Server certificate thumbprint by logging into the Platform Services Controller for that vCenter Server instance.

1. Log in to the Platform Services Controller interface.
- Embedded Platform Services Controller: https://vcenter_server_address/psc
- Standalone Platform Services Controller: https://psc_address/psc

2. Select **Certificate Management** and enter a vCenter Single Sign-On password.

3. Select **Machine Certificates**, select a certificate, and click **Show Details**.

4. Copy the thumbprint for use in the **--thumbprint** option of **vic-machine** commands or to set it as an environment variable.
Interoperability with Other VMware Software

vSphere administrators can use the vSphere Client to view and manage the vSphere Integrated Containers appliance, virtual container hosts (VCHs), and container VMs.

- You can use any vSphere feature to manage the vSphere Integrated Containers appliance without affecting its behavior.
- VCHs have some specific requirements when using certain vSphere features and other VMware products.

This topic describes how vSphere features and other VMware products interact with vSphere Integrated Containers, VCHs, and container VMs.

For information about the supported versions of VMware software that are compatible with vSphere Integrated Containers, see the VMware Product Interoperability Matrices.

VMware NSX® Data Center

You can deploy the vSphere Integrated Containers appliance on NSX Data Center for vSphere networks and NSX-T™ Data Center networks.

VCHs require a dedicated network interface for the bridge network. It is also recommended to use a dedicated network interface for the public network. You can also optionally use separate network interfaces for the management, client, and container networks.

- You can deploy VCHs to NSX Data Center for vSphere networks if those networks are configured to provide distributed port groups.
- You can deploy VCHs that use NSX-T Data Center logical switches instead of port groups. vSphere Integrated Containers supports NSX-T Data Center versions 2.0, 2.1, 2.2, and 2.3. vSphere Integrated Containers version 1.5.3 supports NSX-T Data Center version 2.4.

For more information about how to use NSX Data Center and NSX-T Data Center networks with vSphere Integrated Containers, see Networking Requirements for VCH Deployment.

VMware vSAN™ and Other Storage

VCHs maintain file system layers inherent in container images by mapping to discrete VMDK files. Consequently you can use any shared vSphere datastores, including vSAN, NFS, Fibre Channel, and iSCSI datastores when configuring storage for VCHs.

VMware vSphere vMotion®

You can use vMotion to move the vSphere Integrated Containers appliance and VCHs without needing to take the container VMs offline. The VCH endpoint VM does not need to be running for vMotion to occur on the container VMs. You can use vMotion on clusters with a mix of container VMs and non-container VMs.
VMware vSphere Distributed Resource Scheduler™

You can deploy the vSphere Integrated Containers appliance to DRS enabled clusters. When deploying VCHs, VMware recommends that you enable DRS on the target clusters whenever possible, but this is not a requirement. For more information about VCHs and DRS, see Supported Configurations for VCH Deployment in Virtual Infrastructure Requirements.

VMware vRealize® Automation™

Your organization could use VMware vRealize Automation to provide a self-provisioning service for VCHs, by using the vRealize Automation interface or APIs to request VCHs. At the end of the provisioning process, vRealize Automation would communicate the VCH endpoint VM address to the requester. If you deploy VCHs with TLS authentication, `vic-machine create` generates a file named `<vch_name>.env`. The `env` file contains Docker environment variables that are specific to the VCH. vRealize Automation could potentially provide the `env` file at the end of a provisioning process for VCHs.

- vRealize Automation 7.3 supports vSphere Integrated Containers 1.1.x.
- vRealize Automation 7.4 supports vSphere Integrated Containers 1.3.x.
- vRealize Automation 7.5 supports vSphere Integrated Containers 1.3.x and 1.4.x, up to and including 1.4.2.
- vRealize Automation 7.6 supports vSphere Integrated Containers 1.4.x and 1.5.x, up to and including 1.5.2.

For the most up-to-date information about compatibility with vRealize Automation, see the VMware Product Interoperability Matrices.

General vSphere Operation and Other Features

- If you restart a VCH endpoint VM, it comes back up in the same state that it was in when it shut down.
- If you use DHCP on the client network, the IP address of the VCH endpoint VM might change after a restart. Use `vic-machine inspect` to obtain the new IP address.
- Do not manually delete a VCH resource pool, the VCH endpoint VM, or container VMs. Always use the vSphere Integrated Containers plug-in for the vSphere Client or `vic-machine delete` to delete VCHs. Always use Docker commands or the vSphere Integrated Containers Management Portal to perform operations on container VMs.
- You can stop container VMs by selecting the Power > Shut Down Guest OS option. If you use this option the application will be stopped using the same escalating approach as running `docker stop`. The application first receives the `STOPSIGNAL` defined in the container image, then SIGTERM, SIGKILL, and finally the VM will power off. There is a 10 second delay between each step, to allow the application to exit gracefully.
- Do not restart or power off container VMs by selecting Power > Reset or Power > Power Off. Using those options can result in incorrect end-times for container operations. Always use Power > Shut Down Guest OS, Docker commands, or the vSphere Integrated Containers Management Portal to perform restart and stop operations on container VMs.

VMware vSphere High Availability
You can apply vSphere High Availability to clusters on which VCHs and container VMs run. If the host on which a VCH or container VMs are running goes offline, the VCH and container VMs migrate to another host in the cluster. VCHs restart on the new host immediately. Container VMs that were running before the migration restart one by one, after the VCH has restarted. For more information about VCHs and High Availability, see Backing Up Virtual Container Host Data.

vCenter Server High Availability

In vSphere Integrated Containers 1.5.4 and later, you can install the vSphere Integrated Containers plugin on a vCenter Server instance that has vCenter Server High Availability enabled, and use the plugin to deploy VCHs to that highly available instance.

Maintenance Mode

In a cluster with fully automated DRS, if you put a host into maintenance mode, DRS migrates the VCHs and container VMs to another host in the cluster. Putting hosts into maintenance mode requires manual intervention in certain circumstances:

- If VCHs and container VMs are running on a standalone ESXi host, you must power off the VCHs and container VMs before you put the host into maintenance mode.
- If container VMs have active `docker attach` sessions, you cannot put the host into maintenance mode until the `attach` sessions end.

Enhanced Linked Mode Environments

You can deploy VCHs in Enhanced Linked Mode environments. Any vCenter Server instance in the Enhanced Linked Mode environment can access VCH and container VM information.

vSphere Features Not Supported in This Release

VCHs do not currently support the following vSphere features:

- vSphere Storage DRS™: You cannot configure VCHs to use Storage DRS datastore clusters.
- vSphere Fault Tolerance: vSphere Integrated Containers does not implement vSphere Fault Tolerance. However, VCH processes that stop unexpectedly do restart automatically, independently of vSphere Fault Tolerance.
- vSphere Virtual Volumes™: You cannot use Virtual Volumes as the target datastores for image stores or volume stores.
- Snapshots: Creating and reverting to snapshots of the VCH endpoint VM or container VMs can cause vSphere Integrated Containers Engine not to function correctly.
Installing vSphere Integrated Containers

You install vSphere Integrated Containers by deploying an OVA appliance. The OVA appliance provides access to all of the vSphere Integrated Containers components and services.

- Download the vSphere Integrated Containers Installer
- Deploy the Appliance
- Download the vSphere Integrated Containers Engine Bundle
Download the vSphere Integrated Containers Installer

You can download different versions of vSphere Integrated Containers, that have different levels of stability and support.

Official Releases

To obtain the latest official release of vSphere Integrated Containers, go to the [official vSphere Integrated Containers downloads page on vmware.com](http://vmware.com) and download the OVA installer. The OVA installer allows you to deploy all of the vSphere Integrated Containers components.

vSphere Integrated Containers depends on certain features that are available in the vSphere Enterprise Plus or vSphere Remote Office Branch Office (ROBO) Advanced licenses. To make a support request, contact [VMware Global Support](https://www.vmware.com/support/).

Open Source Builds of vSphere Integrated Containers

You can obtain open source builds of vSphere Integrated Containers Engine, vSphere Integrated Containers Portal, and vSphere Integrated Containers Registry, that have different levels of stability.

- Download built binaries of the individual components. Builds usually happen after every successful merge into the source code. These builds have been minimally tested for integration. You need a Google account to access these builds.
 - vSphere Integrated Containers OVA installer
 - vSphere Integrated Containers Engine
 - vSphere Integrated Containers UI
- Download tagged open source software (OSS) versions of the vSphere Integrated Containers components that have been tested and released to the open source community, but that might not reflect the most up-to-date version of the code:
 - vSphere Integrated Containers Engine
 - vSphere Integrated Containers Registry
 - vSphere Integrated Containers Portal
- Build the latest source version of the vSphere Integrated Containers components:
 - vSphere Integrated Containers Engine
 - vSphere Integrated Containers Registry
 - vSphere Integrated Containers Portal

IMPORTANT: Open source builds are not supported by VMware Global Support.

- You can obtain community support for open source builds by [reporting bugs and creating issues on Github](https://github.com).
- For general questions, visit the vSphere Integrated Containers channel on [Slack.com](https://slack.com). If you do not have an @vmware.com or @emc.com email address, sign up at https://code.vmware.com/home to get an invitation.
What to Do Next

Deploy the vSphere Integrated Containers Appliance
Deploy the vSphere Integrated Containers Appliance

You install vSphere Integrated Containers by deploying a virtual appliance.

The following services run in the vSphere Integrated Containers appliance:

- vSphere Integrated Containers Registry service
- vSphere Integrated Containers Management Portal service
- The file server for vSphere Integrated Containers Engine downloads and the installation of the vSphere Client plug-in
- The `vic-machine-server` service, that powers the vSphere Integrated Containers plug-in for the HTML5 vSphere Client.

You can deploy multiple vSphere Integrated Containers appliances to the same vCenter Server instance. Also, if a Platform Services Controller manages multiple vCenter Server instances, you can deploy multiple appliances to different vCenter Server instances that share that Platform Services Controller. For information about deploying multiple appliances, see Deployment Topologies for the vSphere Integrated Containers Appliance.

By default, the vSphere Integrated Containers plug-in for the vSphere Client is installed automatically. The installer installs the following plug-ins:

- A plug-in for the HTML5 vSphere Client on vCenter Server 6.5 and 6.7. The HTML5 plug-in allows you to to deploy and interact with virtual container hosts (VCHs) directly in the vSphere Client.
- A basic informational plug-in for the Flex-based vSphere Web Client on vCenter Server 6.0.

NOTE: vSphere Integrated Containers 1.5.2 and later versions do not include the Flex-based vSphere Web Client.

If you need to deploy multiple appliances, you can use the initialization API to initialize appliances without manual intervention. For information about the initialization API, see Initialize the Appliance by Using the Initialization API.

You can also deploy the vSphere Integrated Containers Appliance using the `ovftool` command line utility. For more information, see Deploy the vSphere Integrated Containers Appliance Using VMware OVF Tool.

Prerequisites

- You downloaded an official build or an open-source build of the OVA installer. For information about where to download the installer, see Download the vSphere Integrated Containers Installer.
- Verify that the environment in which you are deploying the appliance meets the prerequisites described in Deployment Prerequisites for vSphere Integrated Containers.
- Obtain the vCenter Server certificate thumbprint. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.
- If you intend to use a custom certificate for the vSphere Integrated Containers appliance, verify that the certificate meets the criteria described in vSphere Integrated Containers Appliance Certificate Requirements.
If you use vCenter Server 6.7 update 1 or later, you can use the HTML5 vSphere Client to deploy the appliance. If you use an older version of vCenter Server, you must use the Flex-based vSphere Web Client to deploy the appliance. You cannot deploy OVA files from versions of the HTML5 vSphere Client that pre-date vCenter Server 6.7 update 1.

NOTE: Versions of the HTML5 client that pre-date 6.7 update 1 do not prevent you from deploying OVA files and deployment appears to succeed. However, the resulting appliance does not function correctly due to an issue with the HTML5 client. This issue is fixed in version 6.7 update 1 of the vSphere Client.

Procedure 1: Deploy the OVA

1. In the vSphere Client, right-click an object in the vCenter Server inventory, select **Deploy OVF template**, and navigate to the OVA file.
2. Follow the installer prompts to perform basic configuration of the appliance and to select the vSphere resources for it to use.
 - Accept or modify the appliance name
 - Select the destination datacenter or folder
 - Select the destination host, cluster, or resource pool
 - Accept the end user license agreements (EULA)
 - Select the disk format and destination datastore
 - Select the network that the appliance connects to
3. On the **Customize template** page, expand **Appliance Configuration**.
 - Set the root password for the appliance VM. Setting the root password for the appliance is mandatory. In vSphere Integrated Containers 1.5.3 and later versions, the root password cannot exceed 128 characters. In earlier versions, the root password cannot exceed 30 characters.
 - Optionally uncheck the **Permit Root Login** checkbox.
 IMPORTANT: You require SSH access to the vSphere Integrated Containers appliance to perform upgrades. You can also use SSH access in exceptional cases that you cannot handle through standard remote management or CLI tools. Only use SSH to access the appliance when instructed to do so in the documentation, or under the guidance of VMware GSS.
4. Configure the appliance certificate, that is used by all of the services that run in the appliance to authenticate connections.
 - To use auto-generated certificates, leave the **Appliance TLS Certificate**, **Appliance TLS Certificate Key**, and **Certificate Authority Certificate** text boxes blank.
 - To use a custom certificate:
 i. Paste the contents of the server certificate PEM file in the **Appliance TLS Certificate** text box.

```
-----BEGIN CERTIFICATE-----
VIC_appliance_server_certificate_contents
-----END CERTIFICATE-----
```
ii. Paste the contents of the certificate key in the **Appliance TLS Certificate Key** text box. The appliance supports unencrypted PEM encoded PKCS#1 and unencrypted PEM encoded PKCS#8 formats for TLS private keys.

```
-----BEGIN PRIVATE KEY-----
VIC_appliance_private_key_contents
-----END PRIVATE KEY-----
```

iii. Paste the contents of the Certificate Authority (CA) file in the **Certificate Authority Certificate** text box.

```
-----BEGIN CERTIFICATE-----
root_CA_certificate_contents
-----END CERTIFICATE-----
```

To use a certificate that uses a chain of intermediate CAs, paste into the **Certificate Authority Certificate** text box the contents of a certificate chain PEM file. The PEM file must include a chain of the intermediate CAs all the way down to the root CA.

```
-----BEGIN CERTIFICATE-----
intermediate_CA_certificate_contents
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
intermediate_CA_certificate_contents
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
root_CA_certificate_contents
-----END CERTIFICATE-----
```

5. In the **Appliance Configuration Port** text box, optionally change the port on which to publish the vSphere Integrated Containers Getting Started page.

6. Expand **Networking Properties** and optionally configure the networking for the appliance VM.

 - To set a static IP address on the appliance, set the **Network IP Address**, **Network Netmask**, and **Default Gateway** settings. To use DHCP, leave these properties blank.
 - To configure DNS servers, set the **Domain Name Servers**, and **Domain Search Path** settings. To use DHCP, leave these properties blank.

 IMPORTANT: Use spaces to separate DNS servers. Do not use comma separation for DNS servers.

 - To specify a fully qualified domain name (FQDN) for the appliance, set the **FQDN** setting. The appliance uses the FQDN to register with the Platform Services Controller and runs the Registry, Management Portal, and file server services at that FQDN. To use DHCP, leave this property blank.
 - To specify one or more network time protocol (NTP) servers, set the **NTP Servers** setting. To use an NTP server provided by DHCP, leave this property blank.
 - To configure the appliance to use proxies, and to identify hosts or domains that do not use proxies, set the **HTTP Proxy URL**, **HTTPS Proxy URL**, and **No Proxy List** settings.
NOTE: If you intend to implement image scanning with Clair in vSphere Integrated Containers Registry, and if your environment uses proxies, you must set both of the HTTP and HTTPS proxy URL settings. This is because the Clair updater requires HTTPS.

7. Expand **Registry Configuration** to configure the deployment of vSphere Integrated Containers Registry.
 - In the **Registry Port** text box, optionally change the port on which to publish the vSphere Integrated Containers Registry service.
 - In the **Notary Port** text box, optionally change the port on which to publish the Docker Content Trust service for vSphere Integrated Containers Registry.
 - Optionally check the **Garbage Collection** check box to enable garbage collection on the registry when the appliance reboots.

8. (Optional) Expand **Management Portal Configuration** and optionally change the port on which to publish the vSphere Integrated Containers Management Portal service.

9. Expand **Configure Example Users** to configure the ready-made example user accounts that vSphere Integrated Containers creates by default in the Platform Services Controller.

 You can use these accounts to test the different user personas that can access vSphere Integrated Containers Management Portal and Registry.
 - Uncheck the **Create Example Users** checkbox if you do not want vSphere Integrated Containers to create user accounts in the Platform Services Controller.
 - In the **Username Prefix for Example Users** text box, optionally modify the prefix of the example user names from the default, vic. If you unchecked the **Create Example Users** checkbox, this option is ignored.
 - In the **Password for Example Users** text boxes, modify the password for the example user account from the default, VicPro!23. The new password must comply with the password policy for the Platform Services Controller, otherwise the creation of the example user accounts fails. If you unchecked the **Create Example Users** checkbox, this option is ignored.

 IMPORTANT: If you did not uncheck the **Create Example Users** checkbox, it is strongly recommended that you change the default password for the example users.

10. Expand the **Syslog Configuration** to optionally configure the Syslog server to forward the appliance logs.
 - In the **Remote Syslog Server** text box, specify the IP address or host name of the Syslog server that you want to forward the appliance logs to. Leave this property blank if you do not want to forward the logs.
 - In the **Syslog server protocol** property, specify the protocol used by the Syslog server to upload logs. The default protocol is **UDP**. You can also specify **TCP** as the protocol. If you specify **TCP**, the Syslog server must support the TCP protocol.
 - In the **Syslog Server Port** textbox, specify the remote Syslog server port. Default port is **514**.

11. Click **Next** and **Finish** to deploy the vSphere Integrated Containers appliance.

Procedure 2: Register the Appliance with vCenter Server

1. When the deployment completes, power on the appliance VM.

 If you deployed the appliance so that it obtains its address via DHCP, go to the **Summary** tab for the appliance VM and note the address.
2. (Optional) If you provided a static network configuration, view the network status of the appliance.

 i. In the **Summary** tab for the appliance VM, launch the VM console

 ii. In the VM console, press the right arrow key.

 The network status shows whether the network settings that you provided during the deployment match the settings with which the appliance is running. If there are mismatches, power off the appliance and select **Edit Settings > vApp Options** to correct the network settings.

3. In a browser, go to the vSphere Integrated Containers appliance welcome page.

 You can specify the address in one of the following formats:

 - `vic_appliance_address`
 - `http://vic_appliance_address`
 - `https://vic_appliance_address:9443`

 The first two formats redirect automatically to `https://vic_appliance_address:9443`. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, the redirect uses the port specified during deployment. If you specify HTTPS, you must include the port number in the address.

 Wait for a few minutes to allow the appliance services to start. During this time, you see the message **The VIC Appliance is initializing**. When the initialization finishes, the Complete VIC appliance installation panel appears automatically. If you see a page not found error during initialization, refresh your browser.

4. Enter the connection details for the vCenter Server instance on which you deployed the appliance.

 - The vCenter Server address and the Single Sign-on credentials for a vSphere administrator account.
 - If vCenter Server is managed by an external Platform Services Controller, enter the FQDN and administrator domain for the Platform Services Controller. If vCenter Server is managed by an embedded Platform Services Controller, leave the External PSC text boxes empty.

 IMPORTANT: The installation process requires administrator credentials to register vSphere Integrated Containers Management Portal and Registry with the Platform Services Controller and to tag the appliance VM for use in Docker content trust. Administrator credentials are not stored on the appliance VM after use in the installation process. The vSphere Integrated Containers Management Portal and Registry services cannot start if you do not complete this step.

5. Enter the root password for the vSphere Integrated Containers appliance, that you set when you deployed the OVA.

6. To automatically install the vSphere Integrated Containers plug-in for vSphere Client, leave the **Install UI Plugin** check box selected, and click **Continue**.

 NOTE: By default, in an environment in which multiple vSphere Integrated Containers are deployed to the same vCenter Server instance, the vSphere Integrated Containers plug-in connects to one appliance only. This appliance instance might not be the one that registered most recently with vCenter Server. Consequently, if there are older instances of the appliance registered with vCenter Server and you do not want the plug-in to automatically upgrade to the latest version, deselect the **Install UI Plugin** check box. You can see version information about the plug-in and the appliance in the Summary tab of the vSphere Integrated Containers plug-in. If you deselect the **Install UI Plugin** check box, you can install or upgrade the plug-in later.
7. Verify that the certificate thumbprint for vCenter Server is valid, and click Continue to complete the installation of the appliance.

Result

You see the vSphere Integrated Containers appliance welcome page. The appliance welcome page includes the following links:

- vSphere Integrated Containers Management Portal
- The download for the vSphere Integrated Containers Engine bundle
- Documentation

What to Do Next

- If you selected Install UI Plugin, access the vSphere Integrated Containers plug-in for vSphere Client:
 1. Log out of the HTML5 vSphere Client and log back in again. You should see a banner that states There are plug-ins that were installed or updated.
 2. Log out of the HTML5 vSphere Client a second time and log back in again.
 3. Click the vSphere Client logo in the top left corner.
 4. Under Inventories, click vSphere Integrated Containers to access the vSphere Integrated Containers plug-in.
- If you selected Install UI Plugin, you can Deploy Virtual Container Hosts in the vSphere Client.
- If you deselected the Install UI Plugin check box and want to install the plug-in later, see Reinitialize the vSphere Integrated Containers Appliance.
- Download the vSphere Integrated Containers Engine bundle and start using vic_machine to deploy virtual container hosts.
- Log in to vSphere Integrated Containers Management Portal. For information about the management portal, see vSphere Integrated Containers Management Portal Administration.

Troubleshooting

- For information about how to access the logs for the appliance, see Access and Configure Appliance Logs.
- If you do not see a green success banner at the top of the appliance welcome page after initializing the appliance, the appliance has not initialized correctly. For more information, see Reinitialize the vSphere Integrated Containers Appliance.
- If deployment of the appliance fails, see Troubleshoot vSphere Integrated Containers Appliance Deployment.
- If you see errors when attempting to connect to the appliance welcome page or to vSphere Integrated Containers Management Portal, or when downloading the vSphere Integrated Containers Engine bundle, see Troubleshoot Post-Deployment Operation.
- To remove security warnings when you connect to the appliance welcome page or management portal, see Obtain the Thumbprint and CA File of the vSphere Integrated Containers Appliance Certificate and Verify and Trust vSphere Integrated Containers Appliance Certificate.
- If necessary, you can reconfigure the appliance after deployment by editing the settings of the appliance VM. For
information about reconfiguring the appliance and other post-installation management tasks, see Manage the vSphere Integrated Containers Appliance.
Deploy the vSphere Integrated Containers Appliance Using VMware OVF Tool

You can deploy the vSphere Integrated Containers Appliance using the VMware OVF Tool.

The vSphere Integrated Containers Engine bundle includes the `OVA-util` utility. The `OVA-util` utility is a command-line utility that allows you to import and export OVF packages. This utility contains the `ovftool` command that you can use to deploy the vSphere Integrated Containers Appliance at the command line.

- Prerequisites
- Running the `ovftool` Command
- Specifying Option Arguments
- Basic `ovftool` Options
- Advanced `ovftool` Options
- Example `ovftool` Command

Prerequisites

Download the VMware OVF Tool from https://code.vmware.com/web/tool/4.3.0/ovf.

Running the `ovftool` Command

You run `ovftool` by specifying the source locator, target locator, and options for the command.

At the command-line prompt, run the command as follows:

```
ovftool <source locator> <target locator>
```

If you are using an operating system where spaces are not allowed in paths on the command line, and need the full path to run OVF Tool, enclose the path in quotes as shown below:

```
"/Applications/VMware OVF Tool/ovftool"
```

The `<source locator>` can be one of the following:

- A path to an OVF or OVA file (a local file path, or an HTTP, HTTPS, or FTP URL).
- A virtual machine (a local file path to a .vmx file).
- A vSphere locator identifying a virtual machine or vApp on vCenter, ESXi, or VMware Server.

The target locator can be one of the following:

- A local file path for VMX, OVF, OVA, or vApprun workspace.
- A vSphere locator identifying a cluster, host, or a vSphere location.

Example:

```
ovftool
[...]
Specifying Option Arguments

To specify additional options, type them before the source and target locators as follows: `ovftool <options> <source locator> <target locator>`.

Options perform actions only between certain source and target types. If you specify an option using an irrelevant source or target type, the command does nothing.

All options can be set as follows:

```
--option=value
```

**Example:**

```
--net:“Network”=“%{PUBLIC_NETWORK}”
```

Binary options can be enabled or disabled explicitly. For example: `--option=true`, `--option=false`.

Basic `ovftool` Options

This section lists some of the basic `ovftool` options. You can set environment variables so that you do not have to specify the `<source locator>`, `<target locator>`, `--datastore`, `--name`, `--net`, and `--prop` options in every `ovftool` command.

**--datastore**

Short name: `-ds`

Target datastore name for a vSphere locator.

**Usage**

```
datastore=datastore name
```

**Example:** `--datastore=%{TEST_DATASTORE}`

**--noSSLVerify**

Short name: None

Skips SSL verification for vSphere connections.

**Usage**

```
--noSSLVerify
```
--acceptAllEulas

Accepts all end-user licenses agreements (EULAS) without being prompted.

--name

Short name: -n

The target name. If you do not specify name, the name defaults to the source name.

Usage

--name=OVA name

--diskMode

Short name: -dm

Specify the disk format. You can specify the following formats: monolithicSparse, monolithicFlat, twoGbMaxExtentSparse, twoGbMaxExtentFlat, seSparse (vSphere target), eagerZeroedThick (vSphere target), thin (vSphere target), thick (vSphere target), sparse, and flat.

Usage

--diskmode=format

Example: --diskMode=thin

--help

Short name: -h

Prints the OVF Tool help message that lists the --help options.

Usage

--help

--powerOn

Short name: None

Powers on a virtual machine that is deployed on a vSphere target.

Usage

--powerOn
--net

Short name: None

Sets a network assignment in the deployed OVF package.

Usage

```
--net: OVF name=target name
```

Example: `--net:"Network"="%{PUBLIC_NETWORK}"`

--prop

Short name: None

Sets a property in the deployed OVF package.

Usage

```
--prop: key=value
```

For multiple property mappings, repeat the option by separating them with a blank as follows:

```
--prop: key1=value1 --prop: key2=value2 --prop: key3=value3
```

Examples:

```
...--prop: appliance.root_pwd='${OVA_PASSWORD_ROOT}'
--prop: appliance.permit_root_login=True
--prop: appliance.tls_cert='${tls_cert}'
--prop: appliance.tls_cert_key='${tls_cert_key}'
--prop: appliance.ca_cert='${ca_cert}'
--prop: network.ip0='${static-ip}'
--prop: network.netmask0='${netmask}'
--prop: network.gateway0='${gateway}'
--prop: network.DNS0='${dns}'
--prop: network.searchpath0='${searchpath}'
--prop: network.fqdn='${fqdn}'
--prop: syslog_server.syslog_srv_host='${syslog_srv_host}'
--prop: syslog_server.syslog_srv_protocol='${syslog_srv_protocol}'
--prop: syslog_server.syslog_srv_port='${syslog_srv_port}' --
...```

Advanced ovftool Options

This section lists some of the advanced ovftool options.
--X:waitForIp

Waits for VMware tools to return an IP address and print it out. This option must be used together with the --powerOn option of the VI target and a single VM source.

Usage:

--powerOn --X:waitForIp

Example:

```bash
ovftool
[...]
--powerOn --X:waitForIp
[...]
${ova-file} 'vi://%{TEST_USERNAME}:%{TEST_PASSWORD}@%{TEST_URL}/%{TEST_RESOURCE}''
```

--X:injectOvfEnv

If you are running ovftool on an ESXi host, you must “inject” the parameters into the resulting VM when it is powered on. This is because the ESXi host lacks a cache to store the OVF parameters, as in vCenter Server. Therefore, you must use the --X:injectOvfEnv debug option with the --powerOn flag in the command line if you are deploying a virtual machine from ESXi.

Usage:

--X:injectOvfEnv --powerOn

Example:

```bash
ovftool
[...]
--X:injectOvfEnv
[...]
--powerOn
[...]
```

--X:enableHiddenProperties

Enables source properties that are marked as ovf:userConfigurable=false. Use this option to set the values to true. By default, the OVF Tool sets them as false.

Usage:

--X:enableHiddenProperties

--X:logFile
Logs internal events to given log file.

Usage:

```--X:logFile=log-file-name```

Example:

```--X:logFile=ovftool-log.txt```

--- **--X:logLevel**

Indicates the log level. Specify one of the following values: none, quiet, panic, error, warning, info, verbose, trivia.

Usage:

```--X:logLevel=Level```

Example:

```--X:logLevel=verbose```

--- **--X:logToConsole**

Log internal events to console.

Usage:

```--X:logToConsole```

--- **--X:logTransferHeaderData**

Add transfer header data to the log. Use this option with care. The default value is `false`.

Usage:

```--X:logTransferHeaderData```

Example ovftool Command

The following command sets the appliance root password and uses the default values for other options:

```<pre>
</pre>```
For password requirements, see Deploy the vSphere Integrated Containers Appliance.

For more information about the VMware OVF Tool and how to use it, see the OVF Tool Documentation.

The following sources also provide useful information:

- OVF Tool Advanced Options
- Deploying vSphere Integrated Containers with the OVF Tool
Register the Appliance by Using the Registration API

The vSphere Integrated Containers appliance provides an API that, after deployment, allows you to register the appliance with vCenter Server without having to manually enter information in the appliance welcome page. This API helps you to automate the deployment of appliances without manual intervention.

The appliance exposes the registration API endpoint at https://vic_appliance_address:9443/register. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, 9443 is replaced with the appropriate port.

Prerequisites

You deployed an instance of the vSphere Integrated Containers appliance without completing the registration wizard that appears in the Complete VIC appliance installation panel when you first go to the vSphere Integrated Containers appliance welcome page.

Procedure

1. On your usual working system, create a file named payload.json, to include information about your vSphere environment.

   vCenter Server with an embedded Platform Services Controller:

   ```json
 {
 "target": "vcenter_server_address",
 "user": "sso_administrator_account",
 "password": "vcenter_sso_administrator_password",
 "thumbprint": "vc_thumbprint",
 "vicpassword": "vic_appliance_root_password"
 }
   ```

   vCenter Server with an external Platform Services Controller:

   ```json
 {
 "target": "vcenter_server_address",
 "user": "sso_administrator_account",
 "password": "vcenter_sso_administrator_password",
 "thumbprint": "vc_thumbprint",
 "externalpsc": "psc_address",
 "pscdomain": "psc_domain",
 "vicpassword": "vic_appliance_root_password"
 }
   ```
NOTE: The registration API does not include an option to skip the installation or upgrade of the vSphere Integrated Containers plug-in for the vSphere Client.

2. Run a `curl` command to pass the `payload.json` file to the initialization API endpoint.

   Copy the command as shown, replacing `vic_appliance_address` with the address of the appliance.

   ```
 curl -k -w '%{http_code}' -d @payload.json https://vic_appliance_address:9443/register
   ```

   If successful, you see the message `operation complete 200`. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, replace 9443 with the appropriate port.

Result

The appliance registers with the Platforms Services Controller. After registration, vSphere Integrated Containers services are available at `https://vic_appliance_address:9443`.

Example

Here is an example of a completed `payload.json` file:

```json
{
 "target":"vcenter-server1.mycompany.org",
 "user":"Administrator@vsphere.local",
 "password":"p@ssw0rd!",
 "externalpsc":"psc1.mycompany.org",
 "pscdomain":"vsphere.local",
 "vicpassword":"vic_appliance_root_password"
}
```
**Download the vSphere Integrated Containers Engine Bundle**

After you deploy the vSphere Integrated Containers appliance, you download the vSphere Integrated Containers Engine bundle from the appliance to your usual working machine.

The vSphere Integrated Containers Engine bundle includes:

- Scripts that you run to install, upgrade, or remove the vSphere Client plug-in for vSphere Integrated Containers.
- The `vic-machine` command line utility, that you use to deploy virtual container hosts (VCHs) and manage their lifecycle.

**Prerequisites**

- You deployed the vSphere Integrated Containers appliance. For information about deploying the appliance, see [Deploy the vSphere Integrated Containers Appliance](#).
- Your working machine runs a 64-bit version of the following Windows, Mac OS, or Linux OS systems.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Supported Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>7, 10</td>
</tr>
<tr>
<td>Mac OS X</td>
<td>10.11 (El Capitan)</td>
</tr>
<tr>
<td>Linux</td>
<td>Ubuntu 16.04 LTS</td>
</tr>
</tbody>
</table>

The `vic-machine` utility has been tested and verified on the operating systems above. Other recent 64-bit OS versions should work but are untested.

**Procedure**

1. In a browser, go to the vSphere Integrated Containers appliance welcome page.
   
   You can specify the address in one of the following formats:
   
   - `vic_appliance_address`
   - `http://vic_appliance_address`
   - `https://vic_appliance_address:9443`

   The first two formats redirect automatically to `https://vic_appliance_address:9443`. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, the redirect uses the port specified during deployment. If you specify HTTPS, you must include the port number in the address.

2. Scroll down to **Infrastructure deployment tools** and click the link to **download the vSphere Integrated Containers Engine bundle**.

3. Unpack the bundle on your working machine.
**Result**

When you unpack the vSphere Integrated Containers Engine bundle, you obtain following files:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vic-machine-darwin</td>
<td>The OSX command line utility for the deployment and management of VCHs.</td>
</tr>
<tr>
<td>vic-machine-linux</td>
<td>The Linux command line utility for the deployment and management of VCHs.</td>
</tr>
<tr>
<td>vic-machine-windows.exe</td>
<td>The Windows command line utility for the deployment and management of VCHs.</td>
</tr>
<tr>
<td>vic-machine-server</td>
<td>The endpoint for the vic-machine API. The vic-machine API is currently experimental and unsupported.</td>
</tr>
<tr>
<td>appliance.iso</td>
<td>The boot image for the virtual container host (VCH) endpoint VM, based on Photon OS 2.0.</td>
</tr>
<tr>
<td>bootstrap.iso</td>
<td>The boot image for the container VMs, based on Photon OS 2.0.</td>
</tr>
<tr>
<td>README</td>
<td>Contains a link to the vSphere Integrated Containers Engine repository on GitHub.</td>
</tr>
<tr>
<td>LICENSE</td>
<td>The license file.</td>
</tr>
</tbody>
</table>

**What to Do Next**

- If you did not do so when deploying the appliance, install the vSphere Client plug-in. For information, see [Reinitialize the vSphere Integrated Containers Appliance](#). By default, the plug-in is installed automatically.
- Use either the vic-machine CLU utility or the Create Virtual Container Host wizard in the vSphere Client to [Deploy Virtual Container Hosts](#).
Virtual Container Host Deployment

In vSphere Integrated Containers, you deploy virtual container hosts (VCHs) that serve as Docker API endpoints. VCHs allow Docker developers to provision containers as VMs in your vSphere environment. For a description of the role and function of VCHs, see Introduction to vSphere Integrated Containers Engine.

After you deploy the vSphere Integrated Containers appliance, you download the vSphere Integrated Containers Engine bundle from the appliance to your usual working machine. The vSphere Integrated Containers Engine bundle includes the vic-machine CLI utility. You use vic-machine to deploy and manage VCHs at the command line.

The HTML5 vSphere Client plug-in for vSphere Integrated Containers allows you to deploy VCHs interactively from the vSphere Client.

- Using the vic-machine CLI Utility
- Open the Required Ports on ESXi Hosts
- Create the Operations User Account
- Deploy Virtual Container Hosts in the vSphere Client
- Virtual Container Host Deployment Options
- Deploy a Test VCH
- VCH Boot Options
- Virtual Container Hosts Sizing Guidelines
Using the `vic-machine` CLI Utility

After you deploy the vSphere Integrated Containers appliance, you download the vSphere Integrated Containers Engine bundle from the appliance and unpack it on your usual working machine. For information about how to download the bundle, see Download the vSphere Integrated Containers Engine Bundle.

The vSphere Integrated Containers Engine bundle includes the `vic-machine` CLI utility. You use `vic-machine` to deploy and manage virtual container hosts (VCHs) at the command line.

Running `vic-machine` Commands

You run `vic-machine` commands by specifying the appropriate binary for the platform on which you are using `vic-machine`, the `vic-machine` command to run, and multiple options for that command.

You use the `vic-machine create` command to deploy VCHs:

```
vic-machine-windows create --option argument --option argument
```

```
vic-machine-linux create --option argument --option argument
```

```
vic-machine-darwin create --option argument --option argument
```

Enabling Autocomplete

vSphere Integrated Containers provides an autocomplete feature for `vic-machine` commands and options. The autocomplete feature is available for the `bash` and `zsh` shells, for all of the Windows, Linux, and MacOS versions of `vic-machine`.

To enable autocomplete, download the vSphere Integrated Containers bundle and unpack it on your working machine.

1. Open a `bash` or `zsh` shell and navigate to the `vic` folder of the unpacked vSphere Integrated Containers bundle.
2. Run the `source` command to configure the autocomplete function of the current shell instance, according to your shell and OS.
   - Windows and `bash`:
     ```
 source autocomplete/bash/vic-machine-windows.exe
     ```
   - Linux and `bash`:
source autocomplete/bash/vic-machine-linux

- MacOS and bash:
  source autocomplete/bash/vic-machine-darwin

- Windows and zsh:
  source autocomplete/zsh/vic-machine-windows.exe

- Linux and zsh:
  source autocomplete/zsh/vic-machine-linux

- MacOS and zsh:
  source autocomplete/zsh/vic-machine-darwin

Using the source command enables autocomplete for the current session. For information about how to enable autocomplete persistently, see documentation for your shell and OS combination.

3. Start typing a vic-machine command and hit the tab key.

The autocomplete utility lists all of the possible commands that match what you typed. For example if you type vic-machine-windows c and hit tab, the autocomplete proposes the following commands:

$ vic-machine-windows c
  configure  create

If you start typing an option and hit tab, the autocomplete utility lists all of the possible options. For example:

$ vic-machine-windows create --t
  --target --timeout --tls-cert-path --tls-server-cert
  --thumbprint --tls-ca --tls-cname --tls-server-key

**Specifying Option Arguments**

Wrap any option arguments that include spaces or special characters in quotes. Use single quotes if you are using vic-machine on a Linux or Mac OS system and double quotes on a Windows system.

Option arguments that might require quotation marks include the following:

- User names and passwords in --target, or in --user and --password.
- Datacenter names in --target.
- VCH names in --name.
Datastore names and paths in `--image-store` and `--volume-store`.

Network and port group names in all networking options.

Cluster and resource pool names in `--compute-resource`.

Folder names in the paths for `--tls-cert-path`, `--tls-server-cert`, `--tls-server-key`, `--appliance-iso`, and `--bootstrap-iso`.

For example, to deploy a VCH into a cluster named `cluster 1` in a vCenter Server instance that requires the vSphere administrator account `Administrator@vsphere.local`, you must wrap the corresponding option arguments in quotes:

```bash
vic-machine-linux
--target vcenter_server_address
--user 'Administrator@vsphere.local'
--compute-resource 'cluster 1'
[...]
```

```bash
vic-machine-windows
--target vcenter_server_address
--user "Administrator@vsphere.local"
--compute-resource "cluster 1"
[...]
```

**Basic vic-machine create Options**

The `vic-machine` options in this section are common to all `vic-machine` commands.

You can set environment variables so that you do not have to specify the `--target`, `--user`, `--password`, and `--thumbprint` options in every `vic-machine` command. For information about setting `vic-machine` environment variables, see Set Environment Variables for Common `vic-machine` Options.

If you use the Create Virtual Container Host wizard, it deploys VCHs to the vCenter Server instance with which the vSphere Integrated Containers appliance is registered, and uses the vSphere credentials with which you are logged in to the vSphere Client. Consequently, when using the Create Virtual Container Host wizard, you do not need to provide any information about the deployment target, vSphere administrator credentials, or vSphere certificate thumbprints.

---

**--target**

Short name: `-t`

The IPv4 address, fully qualified domain name (FQDN), or URL of the ESXi host or vCenter Server instance on which you are deploying a VCH. This option is always mandatory when using `vic-machine`.

To facilitate IP address changes in your infrastructure, provide an FQDN whenever possible, rather than an IP address. If `vic-machine create` cannot resolve the FQDN, it fails with an error.

**Usage:**
If the target ESXi host is not managed by vCenter Server, provide the address of the ESXi host.

```
--target esxi_host_address
```

If the target ESXi host is managed by vCenter Server, or if you are deploying to a cluster, provide the address of vCenter Server.

```
--target vcenter_server_address
```

You can include the user name and password in the target URL. If you are deploying a VCH on vCenter Server, specify the user name for an account that has the Administrator role on that vCenter Server instance.

```
--target vcenter_or_esxi_username:password@vcenter_or_esxi_address
```

If you do not include the user name in the target URL, you must specify the `--user` option. If you do not specify the `--password` option or include the password in the target URL, `vic-machine` prompts you to enter the password.

If you are deploying a VCH on a vCenter Server instance that includes more than one datacenter, include the datacenter name in the target URL. If you include an invalid datacenter name, `vic-machine create` fails and suggests the available datacenters that you can specify.

```
--target vcenter_server_address/datacenter_name
```

```
--user
```

Short name: `u`

The user name for the ESXi host or vCenter Server instance on which you are deploying a VCH.

If you are deploying a VCH on vCenter Server, specify a user name for an account that has the Administrator role on that vCenter Server instance.

You can also specify the user name in the URL that you pass to `vic-machine create` in the `--target` option, in which case the `--user` option is not required.

You can configure a VCH so that it uses a non-administrator account with reduced privileges for post-deployment operations by specifying the `--ops-user` option. If you do not specify `--ops-user`, VCHs use the vSphere administrator account that you specify in `--user` for general post-deployment operations. For information about using a different account for post-deployment operation, see Create the Operations User Account.

```
Usage:

--user esxi_or_vcenter_server_username
```

```
--password
```

58
The password for the vSphere administrator account on the vCenter Server on which you are deploying the VCH, or the password for the ESXi host if you are deploying directly to an ESXi host. If not specified, vic-machine prompts you to enter the password during deployment.

You can also specify the user name and password in the URL that you pass to vic-machine create in the --target option, in which case the --password option is not required.

**Usage:**

```
--password esxi_host_or_vcenter_server_password
```

**--thumbprint**

**Short name:** None

If your vSphere environment uses untrusted, self-signed certificates to authenticate connections, you must specify the thumbprint of the vCenter Server or ESXi host certificate in the --thumbprint option of all vic-machine commands. If your vSphere environment uses trusted certificates that are signed by a known Certificate Authority (CA), you do not need to specify the --thumbprint option.

For information about how to obtain the certificate thumbprint for vCenter Server or an ESXi host, see Obtain vSphere Certificate Thumbprints.

If you run vic-machine without the specifying the --thumbprint option and the operation fails, the resulting error message includes the certificate thumbprint. Always verify that the thumbprint in the error message is valid before attempting to run the command again.

**CAUTION:** Specifying the --force option bypasses safety checks, including certificate thumbprint verification. Using --force in this way can expose VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using --force can result in unexpected deployment topologies that would otherwise fail with an error. Do not use --force in production environments.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

**Usage:**

```
--thumbprint certificate_thumbprint
```

**--force**

**Short name:** -f

Forces vic-machine create to ignore warnings and non-fatal errors and continue with the deployment of a VCH. Errors such as an incorrect compute resource still cause the deployment to fail.

**CAUTION:** Specifying the --force option bypasses safety checks, including certificate thumbprint verification. Using --force in this way can expose VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using --force can result in unexpected deployment topologies that would otherwise fail with an error. Do not use --force in production environments.
not use `--force` in production environments.

Usage:

```
--force
```

```
--timeout
```

**Short name:** none

The timeout period for uploading the vSphere Integrated Containers Engine files and ISOs to the ESXi host, and for powering on the VCH. Specify a value in the format `XmYs` if the default timeout of `3m0s` is insufficient.

Usage:

```
--timeout 5m0s
```

**Other `vic-machine create` Options**

The `vic-machine create` command provides many more options that allow you to customize the deployment of VCHs to correspond to your vSphere environment and to meet your development requirements.

For information about the other VCH deployment options, see the following topics:

- General Virtual Container Host Settings
- Virtual Container Host Compute Capacity
- Virtual Container Host Storage Capacity
- Virtual Container Host Networks
- Virtual Container Host Security
- Configure Registry Access
- Configure the Operations User
- Virtual Container Host Compute Capacity
- Virtual Container Host Boot Options

The options that these topics describe apply to both the `vic-machine` CLI utility and to the Create Virtual Container Host wizard in the vSphere Client.

For the full list of `vic-machine create` options, with links to the relevant sections of the documentation, see `vic-machine Options Reference`. 
Set Environment Variables for Common `vic-machine` Options

If you deploy multiple virtual container hosts (VCHs) to the same vCenter Server instance or ESXi host, you can simplify `vic-machine` commands by setting environment variables for certain key `vic-machine` options.

You can set environment variables for the following `vic-machine` options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--target</td>
<td>VIC_MACHINE_TARGET</td>
<td>The address of the vCenter Server instance or ESXi host on which you are deploying VCHs.</td>
</tr>
<tr>
<td>--user</td>
<td>VIC_MACHINE_USER</td>
<td>The user name for the vSphere account that you use when running <code>vic-machine</code> commands. Use an account with administrator privileges.</td>
</tr>
<tr>
<td>--password</td>
<td>VIC_MACHINE_PASSWORD</td>
<td>The password for the vSphere user account.</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>VIC_MACHINE_THUMBPRINT</td>
<td>The thumbprint of the vCenter Server or ESXi host certificate.</td>
</tr>
</tbody>
</table>

**NOTE:** You cannot include the vSphere user name and password in the `VIC_MACHINE_TARGET` environment variable. You must either specify the user name and password in the `VIC_MACHINE_USER` and `VIC_MACHINE_PASSWORD` environment variables, or use the `--user` and `--password` options when you run `vic-machine`.

For information about how to obtain the vCenter Server certificate thumbprint, see [Obtain vSphere Certificate Thumbprints](#).

When you run any of the different `vic-machine` commands, `vic-machine` checks whether environment variables are present in the system. If you have set any or all of the environment variables, `vic-machine` automatically uses the values from those environment variables. You only need to specify the additional `vic-machine` options.

The following examples show some simplified `vic-machine` commands that you can run if you set all four environment variables.

- Create a basic VCH:

  ```
 vic-machine-operating_system create --bridge-network vic-bridge --no-tls --name vch-no-tls
  ```

- List VCHs:

  ```
 vic-machine-operating_system ls
  ```

- Inspect a VCH:

  ```
 vic-machine-operating_system inspect --id vm-123
  ```
- **Upgrade a VCH:**
  
  ```
 vic-machine-operating_system upgrade --id vm-123
  ```

- **Configure a VCH, for example to add a new volume store:**
  
  ```
 vic-machine-operating_system configure --id vm-123 --volume-store
datastore_name/datastore_path:default
  ```

- **Delete a VCH:**
  
  ```
 vic-machine-operating_system delete --id vm-123
  ```

For more information about the `vic-machine ls`, `inspect`, `upgrade`, `configure`, and `delete` commands, see Virtual Container Host Administration with `vic-machine`.
Open the Required Ports on ESXi Hosts

ESXi hosts communicate with the virtual container hosts (VCHs) through port 2377 via Serial Over LAN. For the deployment of a VCH to succeed, port 2377 must be open for outgoing connections on all ESXi hosts before you run `vic-machine create` to deploy a VCH. Opening port 2377 for outgoing connections on ESXi hosts opens port 2377 for inbound connections on the VCHs.

The `vic-machine` utility includes an `update firewall` command, that you can use to modify the firewall on a standalone ESXi host or all of the ESXi hosts in a cluster.

You use the `--allow` and `--deny` flags to enable and disable a firewall rule named `vSPC`. When enabled, the `vSPC` rule allows outbound TCP traffic from the target host or hosts. If you disable the rule, you must configure the firewall via another method to allow outbound connections on port 2377 over TCP. If you do not enable the rule or configure the firewall, vSphere Integrated Containers Engine does not function, and you cannot deploy VCHs.

The `vic-machine create` command does not modify the firewall. Run `vic-machine update firewall --allow` before you run `vic-machine create`.

Prerequisites

- Deploy the vSphere Integrated Containers appliance. For information about deploying the appliance, see Deploy the vSphere Integrated Containers Appliance.
- Download the vSphere Integrated Containers Engine bundle from the appliance to your usual working machine. For information about how to download the bundle, see Download the vSphere Integrated Containers Engine Bundle.
- If your vSphere environment uses untrusted, self-signed certificates, you must specify the thumbprint of the vCenter Server instance or ESXi host in the `--thumbprint` option. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.

Procedure

1. Open a terminal on the system on which you downloaded and unpacked the vSphere Integrated Containers Engine binary bundle.
2. Navigate to the directory that contains the `vic-machine` utility:
3. Run the `vic-machine update firewall` command.

To open the appropriate ports on all of the hosts in a vCenter Server cluster, run the following command:

```
$ vic-machine-operating_system update firewall
--target vcenter_server_address/datacenter
--user "Administrator@vsphere.local"
--password vcenter_server_password
--compute-resource cluster_name
--thumbprint thumbprint
```
To open the appropriate ports on an ESXi host that is not managed by vCenter Server, run the following command:

```
$ vic-machine-operating_system update firewall
 --target esxi_host_address
 --user root
 --password esxi_host_password
 --thumbprint thumbprint
 --allow
```

The `vic-machine update firewall` command in these examples specifies the following information:

- The address of the vCenter Server instance and datacenter, or the ESXi host, on which to deploy the VCH in the `--target` option.
- The user name and password for the vCenter Server instance or ESXi host in the `--user` and `--password` options.
- In the case of a vCenter Server cluster, the name of the cluster in the `--compute-resource` option.
- The thumbprint of the vCenter Server or ESXi host certificate in the `--thumbprint` option, if they use untrusted, self-signed certificates.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

- The `--allow` option to open the port.
Create the Operations User Account

A virtual container host (VCH) requires the appropriate permissions in vSphere to perform various tasks during VCH operation. Deployment of a VCH requires a user account with vSphere administrator privileges. However, day-to-day operation of a VCH requires fewer vSphere permissions than deployment.

During deployment of a VCH, vSphere Integrated Containers Engine runs all deployment operations by using the vSphere administrator account that you specify in the `vic-machine create --user` or `--target` options. If you are using the Create Virtual Container Host wizard, it uses the vSphere administrator account with which you are logged into the vSphere Client.

By default, if you deploy a VCH by using `vic-machine`, it runs with the same user account as you used to deploy it. In this case, the VCH uses the vSphere administrator account for post-deployment operations, meaning that it runs with full vSphere administrator privileges. Running with full vSphere administrator privileges is excessive, and potentially a security risk.

To avoid this situation, you should configure a VCH so that it uses different user accounts for deployment and for post-deployment operation by specifying an operations user when you deploy the VCH. By specifying an operations user with reduced vSphere privileges, you limit its post-deployment privileges to only those privileges that it needs for day-to-day operation.

- How the Operations User Works
  - Default Behavior
  - Operations User Behavior
  - Create a User Account for the Operations User

How the Operations User Works

If you specify an operations user, `vic-machine`, and the VCH behave differently to how they would behave in a default deployment.

Default Behavior

- When you create a VCH by using `vic-machine create`, you provide vSphere administrator credentials to `vic-machine create`, either in `--target` or in the `--user` and `--password` options. During deployment, `vic-machine create` uses these credentials to log in to vSphere and create the VCH. The VCH safely and securely stores the vSphere administrator credentials, for use in post-deployment operation.

- When you run other `vic-machine` commands on the VCH after deployment, for example, `vic-machine ls`, `upgrade`, or `configure`, you again provide the vSphere administrator credentials in the `--target` or `--user` and `--password` options. Again, `vic-machine` uses these credentials to log in to vSphere to retrieve the necessary information or to perform upgrade or configuration tasks on the VCH.

- When a container developer creates a container in the VCH, they authenticate with the VCH with their client certificate. In other words, the developer interacts with the VCH via the Docker client, and does not need to provide any vSphere credentials. However, the VCH uses the stored vSphere administrator credentials that you
Operations User Behavior

- When you create a VCH, the Create Virtual Container Host wizard uses the vSphere administrator credentials with which you logged into vSphere Client to create the VCH. If you use `vic-machine`, you provide vSphere administrator credentials either in `vic-machine create --target` or in the `--user` and `--password` options.
- You also provide the credentials for another vSphere account in the Operations User page of the Create Virtual Container Host wizard or in the `vic-machine create --ops-user` and `--ops-password` options.
- During deployment, vSphere Integrated Containers Engine uses the vSphere administrator credentials to log in to vSphere and create the VCH. The operations user credentials are safely and securely stored in the VCH, for later use in post-deployment operation. In this case, the VCH does not store the vSphere administrator credentials.
- When you perform operations on the VCH after deployment, for example, `vic-machine ls`, `upgrade`, or `configure`, you provide the vSphere administrator credentials in the `--target` or `--user` and `--password` options. This is the same as in the default case. The stored operations user credentials are not used for these operations.
- When a container developer creates a container in the VCH, the VCH uses the stored operations user credentials to log in to vSphere to create the container VM and to run operations on it.

Create a User Account for the Operations User

The user account that you specify as the operations user must exist before you deploy the VCH. If you are deploying the VCH to a vCenter Server cluster, vSphere Integrated Containers Engine provides an option to automatically assign all of the required roles and permissions to the operations user account.

**IMPORTANT**: If you are deploying the VCH to a standalone host that is managed by vCenter Server, rather than to a cluster, you must assign roles and permissions manually. For information about manually configuring the operations user account, see [Manually Create a User Account for the Operations User](#).

You can use the same user account as the operations user for multiple VCHs.

Prerequisite

Log into the vSphere Client with a vSphere administrator account.

Procedure

1. In Home page of the vSphere Web Client, click Administration.
2. Click Users and Groups in the Navigator menu.
3. Select the appropriate domain and click the button to add a new user.
4. Enter a user name for the operations user account, for example `vic-ops`.
5. Enter and confirm the password for this account, optionally provide the additional information, and click OK.

Result
You can use the new user as the operations user account for VCHs. You must use the option to grant any necessary permissions to the user account when you deploy the VCH.
Manually Create a User Account for the Operations User

When you deploy a virtual container host (VCH), the user account that you specify as the operations user must have the correct privileges to allow the VCH to perform post-deployment operations. vSphere Integrated Containers Engine provides a mechanism to automatically assign the necessary permissions to the operations user account. You can also create the user account manually in vSphere.

**IMPORTANT:** If you are deploying the VCH to a standalone host that is managed by vCenter Server, you must configure the operations user account manually. The option to grant any necessary permissions automatically only applies when deploying VCHs to clusters.

To assign permissions to the operations user account, you create roles, assign privileges to those roles, and assign the roles to the operations user account.

- For information about how to create vSphere roles, see [vSphere Permissions and User Management Tasks](https://docs.vmware.com/en/vSphere/67/adminISTERING/0021.html) in the vSphere documentation.
- For information about how to assign permissions to objects in the vSphere Inventory, see [Add a Permission to an Inventory Object](https://docs.vmware.com/en/vSphere/67/adminISTERING/007.html) in the vSphere documentation.

When creating roles manually, the privileges are not as granular as when you use the option to grant permissions automatically. VMware recommends that you use the option to grant permissions automatically whenever possible.

**Prerequisites**

- Create one or more user accounts to use as the operations user for VCHs.
- Log into the vSphere Client with a vSphere administrator account.

**Procedure**

1. In the vSphere Client, create a user group, for example **VIC Ops Users**, and add the appropriate user accounts to the user group.

   The best practice when assigning roles in vSphere is to assign the roles to user groups and then to add users to those groups, rather than assigning roles to the users directly.

2. Go to **Administration > Roles** and create one role for each type of inventory object that VCHs need to access.

   It is possible to create a single role, but by creating multiple roles you keep the privileges of the VCH as granular as possible.

   **NOTE:** In environments that do not implement DRS, you combine the permissions of the **VCH - datastore** and **VCH - endpoint** roles into a single **VCH - endpoint - datastore** role.

<table>
<thead>
<tr>
<th>Role to Create</th>
<th>Required Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

68
| VCH - vcenter | Datastore > Configure datastore  
|              | Global > Enable methods  
|              | Global > Disable methods |
| VCH - datacenter | Datastore > Configure datastore  
|                | Datastore > Low level file operations  
|                | VirtualMachine > Configuration > Add existing disk  
|                | VirtualMachine > Configuration > Add new disk  
|                | VirtualMachine > Configuration > Advanced  
|                | VirtualMachine > Configuration > Remove disk  
|                | VirtualMachine > Inventory > Create new  
|                | VirtualMachine > Inventory > Remove |
| VCH - datastore | Datastore > AllocateSpace  
|                | Datastore > Browse datastore  
|                | Datastore > Configure datastore  
|                | Datastore > Remove file  
|                | Datastore > Low level file operations  
|                | Host > Configuration > System management |
| VCH - network | Network > Assign network |
| VCH - endpoint | dvPort group > Modify  
|                | dvPort group > Policy operation  
|                | dvPort group > Scope operation  
|                | Resource > Assign virtual machine to resource pool  
|                | VirtualMachine > Configuration > Add existing disk  
|                | VirtualMachine > Configuration > Add new disk  
|                | VirtualMachine > Configuration > Add or remove device  
|                | VirtualMachine > Configuration > Advanced  
|                | VirtualMachine > Configuration > Modify device settings  
|                | VirtualMachine > Configuration > Remove disk  
|                | VirtualMachine > Configuration > Rename  
|                | VirtualMachine > Guest operations > Guest operation program execution  
|                | VirtualMachine > Guest operations > Modify  
|                | VirtualMachine > Guest operations > Query  
|                | VirtualMachine > Interaction > Device connection  
|                | VirtualMachine > Interaction > Power off  
|                | VirtualMachine > Interaction > Power on  
|                | VirtualMachine > Inventory > Create new  
|                | VirtualMachine > Inventory > Remove  
|                | VirtualMachine > Inventory > Register  
|                | VirtualMachine > Inventory > Unregister |
| VCH - endpoint - datastore | This role only applies to non-DRS environments. See note.  
|                           | Datastore > AllocateSpace  
|                           | Datastore > Browse datastore  
|                           | Datastore > Configure datastore  
|                           | Datastore > Remove file  
|                           | Datastore > Low level file operations  
|                           | Host > Configuration > System management  
|                           | dvPort group > Modify  
|                           | dvPort group > Policy operation  
|                           | dvPort group > Scope operation  
|                           | Resource > Assign virtual machine to resource pool  
|                           | Resource > Migrate powered off virtual machine  
|                           | VirtualMachine > Configuration > Add existing disk  
|                           | VirtualMachine > Configuration > Add new disk  
|                           | VirtualMachine > Configuration > Add or remove device  
|                           | VirtualMachine > Configuration > Advanced  
|                           | VirtualMachine > Configuration > Modify device settings  
|                           | VirtualMachine > Configuration > Remove disk |
3. In each of the **Hosts and Clusters**, **Storage**, and **Networking** views, select inventory objects and assign the user group and the appropriate role to each one.

   i. Right-click an inventory object and select **Add Permission**.
   ii. Under Users and Groups, select the operations user group that you created.
   iii. Under Assigned Role, assign the appropriate role for each type of inventory object and select the **Propagate to children** check box where necessary.

The following table lists which roles to assign to which type of inventory object, when creating the operations user account.

**NOTE**: You apply different roles to the inventory objects depending on whether DRS is enabled on a cluster. In DRS environments you apply the **VCH - datastore** and **VCH - endpoint** roles to datastores and resource pools respectively. In environments without DRS, you apply the combined **VCH - endpoint - datastore** role to clusters.

<table>
<thead>
<tr>
<th>Inventory Object</th>
<th>Role to Assign</th>
<th>Propagate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-level vCenter Server instance</td>
<td>VCH - vcenter</td>
<td>No</td>
</tr>
<tr>
<td>Datacenters</td>
<td>VCH - datacenter</td>
<td>Yes, if vSphere Distributed Switches are not in network folders. No, if you use network folders. See About vSphere Distributed Switches below</td>
</tr>
<tr>
<td>Clusters with DRS enabled</td>
<td>VCH - datastore</td>
<td>Yes. All datastores in the cluster inherit permissions from the cluster. This role only applies in DRS environments. See note.</td>
</tr>
<tr>
<td>Clusters with DRS disabled</td>
<td>VCH - endpoint - datastore</td>
<td>Yes. All datastores in the cluster inherit permissions from the cluster. This role only applies in non-DRS environments. See note.</td>
</tr>
<tr>
<td>Standalone VMware vSAN datastores</td>
<td>VCH - datastore</td>
<td>No</td>
</tr>
<tr>
<td>Standalone datastores</td>
<td>VCH - datastore</td>
<td>No</td>
</tr>
<tr>
<td>Network folders</td>
<td>Read-only</td>
<td>Yes, if used. See About vSphere Distributed Switches below</td>
</tr>
<tr>
<td>Port groups</td>
<td>VCH - network</td>
<td>No</td>
</tr>
<tr>
<td>Resource pools for VCHs</td>
<td>VCH - endpoint</td>
<td>Yes. This role only applies in DRS environments. See note.</td>
</tr>
</tbody>
</table>
What to Do Next

You can use the user accounts in the user group that you created as operations users for VCHs. When you deploy VCHs you do not need to select the option to grant all necessary permissions in the Create Virtual Container Host wizard, or specify `--ops-grant-perms` in `vic-machine create` commands.

About vSphere Distributed Switches

The operations user account must have the `Read-only` role on all of the vSphere Distributed Switches that VCHs use. You can assign this role to switches in either of the following ways:

- If you do not place the switches in network folders, enable propagation of the `VCH - datacenter` role on datacenters.
- If you place the switches in network folders, assign the `Read-only` role to the network folders, and enable propagation. In this case, you must still assign the `VCH - datacenter` role to datacenters, but you do not need to enable propagation.
Deploy Virtual Container Hosts in the vSphere Client

If you have installed the HTML5 plug-in for vSphere Integrated Containers, you can deploy virtual container hosts (VCHs) interactively in the vSphere Client.

The different options that you configure in the Create Virtual Container Host wizard in the vSphere Client correspond to `vic-machine create` options. The `vic-machine create` options are exposed by the `vic-machine-server` service of the vSphere Integrated Containers appliance. When you use the Create Virtual Container Host wizard, it deploys VCHs to the vCenter Server instance with which the vSphere Integrated Containers appliance is registered, and uses the vSphere credentials with which you are logged in to the vSphere Client. Consequently, when using the Create Virtual Container Host wizard, you do not need to provide any information about the deployment target, vSphere administrator credentials, or vSphere certificate thumbprints.

Prerequisites

- You are running vCenter Server 6.7 or vCenter Server 6.5.0d or later. The vSphere Integrated Containers view does not function with earlier versions of vCenter Server 6.5.0.
- You installed the HTML5 plug-in for vSphere Integrated Containers.
- Make sure that your virtual infrastructure meets the requirements for VCH deployment. For information about virtual infrastructure requirements, see Deployment Prerequisites for vSphere Integrated Containers.

**IMPORTANT:** Pay particular attention to the Networking Requirements for VCH Deployment.

- Familiarize yourself with the way in which VCHs use certificates to authenticate connections from clients. For information about certificate use by VCHs and Docker, see the Virtual Container Host Certificate Requirements.
- Make sure that the correct ports are open on all ESXi hosts. For information about how to open ports on ESXi hosts, see Open the Required Ports on ESXi Hosts.

Procedure

1. Log in to the HTML5 vSphere Client with a vSphere administrator account, and click the vSphere Client logo in the top left corner.
2. Under Inventories, click vSphere Integrated Containers.

   The vSphere Integrated Containers view presents the number of VCHs and container VMs that you have deployed to this vCenter Server instance.

3. Click vSphere Integrated Containers in the main panel and select the Virtual Container Hosts tab.

   On first connection after installation or upgrade, if you see the message Failed to verify the vic-machine server at endpoint https://vic_appliance_address:8443, perform the following steps to trust the certificate of the vic-machine service that is running in the appliance:

   i. Click the link View API directly in your browser that appears in step 3 of the error message.
   ii. In the new browser tab that opens, follow your browser's usual procedure to trust the certificate.
You should see the confirmation message You have successfully accessed the VCH Management API.

iii. Close the new browser tab and click the Refresh button in the error message in the Virtual Container Hosts tab.

When you have trusted the certificate, the error message disappears.

4. Click + New Virtual Container Host.

The Create Virtual Container Host wizard opens.

What to Do Next

See Virtual Container Host Deployment Options for instructions about how to fill in the pages of the Create Virtual Container Host wizard.
VCH Deployment Options

The following topics provide instructions about how to fill in the different pages of the Create Virtual Container Host wizard. These topics also explain how to use the corresponding `vic-machine create` options when deploying VCHs by using the CLI.

- General Settings
- Compute Capacity
- Storage Capacity
- Networks
- Security
- Registry Access
- Operations User
- Finish VCH Deployment in the vSphere Client

For the full list of `vic-machine create` options, see the `vic-machine` Options Reference.
General Virtual Container Host Settings

When you deploy a virtual container host (VCH), you can configure a name for the VCH, a naming convention for container VMs, and debugging levels.

Options

The sections in this topic each correspond to an entry in the General Settings page of the Create Virtual Container Host wizard and to the corresponding `vic-machine create` options.

VCH Name

A name for the VCH, that appears the vCenter Server inventory and that you can use in other `vic-machine` commands. The default VCH name is `virtual-container-host`. If a VCH of the same name already exists, or if the name you provide contains unsupported characters, the wizard reports an error and you cannot progress to the next page, or `vic-machine create` fails with an error.

Create VCH Wizard

Enter a name for the VCH.

`vic-machine` Option

`--name`, `-n`

If a folder of the same name exists in the target datastore, `vic-machine create` creates a folder named `vch_name_1`.

```
--name vch_name
```

Container VM Name Template

Enforce a naming convention for container VMs, that applies a prefix and/or suffix to the names of all container VMs that run in the VCH. Applying a naming convention to container VMs facilitates organizational requirements such as chargeback. The container naming convention applies to the display name of the container VM that appears in the vSphere Client, not to the container name that Docker uses.

You specify whether to use the container name or the container ID for the second part of the container VM display name. If you use the container name, the container VM display names use either the name that Docker generates for the container, or a name that the container developer specifies in `docker run --name` when they run the container.

Create VCH Wizard

1. Optionally enter a container name prefix.
2. Select Docker name or Container ID.
3. Optionally enter a container name suffix.

**vic-machine Option**

--container-name-convention, --cnc

Specify a prefix and/or suffix to apply to container names, and add \{name\} or \{id\} including the curly brackets, to specify whether to use the container name or the container ID for the second part of the container VM display name.

```
--container-name-convention cVM_name_prefix-{name}
```

```
--container-name-convention {id}-cVM_name_suffix
```

```
--container-name-convention cVM_name_prefix-{name}cVM_name_suffix
```

**Container VM Limit**

To prevent a VCH from using too many resources, you can set a limit on the number of container VMs that the VCH can host. You might need to set this limit to prevent a VCH from exhausting the pool of available IP addresses, especially if multiple VCHs share a subnet for container networks. The limit applies to all container VMs that are deployed to the VCH, not just to running container VMs. When the limit is reached, attempts to deploy more container VMs to the VCH fail with an error message, until the appropriate number of container VMs has been deleted. If a user deploys a number of container VMs concurrently, the first container VMs to start will deploy successfully, until the limit is reached. The remaining container VMs will not start until other container VMs have been deleted.

**NOTE:** This option is available in vSphere Integrated Containers 1.5.2 and later.

**Create VCH Wizard**

This option is not available in the Create VCH wizard

**vic-machine Option**

--containers, no short name

Specify an integer. If not specified, or if you specify 0, `vic-machine create` does not set a maximum limit on the number of container VMs that the VCH can host.

```
--containers 100
```

**Debug**
Deploy the VCH with more verbose levels of logging, and optionally modify the behavior of `vic-machine` for troubleshooting purposes. Specifying a debug level of greater than 0 increases the verbosity of the logging for all aspects of VCH operation, not just deployment. For example, by setting a higher debug level, you increase the verbosity of the logging for VCH initialization, VCH services, container VM initialization, and so on.

**NOTE:** Do not confuse the `vic-machine create --debug` option with the `vic-machine debug` command, that enables access to the VCH endpoint VM. For information about `vic-machine debug`, see [Debug Running Virtual Container Hosts](#).

You can set a debugging level of 1, 2, or 3. Setting level 2 or 3 changes the behavior of `vic-machine create` as well as increasing the level of verbosity of the logs:

- **1** Provides verbosity in the logs, with no other changes to `vic-machine` behavior. This is the default setting.
- **2** Exposes servers on more interfaces, launches `pprof` in container VMs.
- **3** Disables recovery logic and logs sensitive data. Disables the restart of failed components and prevents container VMs from shutting down. Logs environment details for user application, and collects application output in the log bundle.

Additionally, deploying a VCH with debug level 3 enables SSH access to the VCH endpoint VM console by default, with a root password of `password`, without requiring you to run the `vic-machine debug` command. This functionality enables you to perform targeted interactive diagnostics in environments in which a VCH endpoint VM failure occurs consistently and in a fashion that prevents `vic-machine debug` from functioning.

**IMPORTANT:** There is no provision for persistently changing the default root password. Only use this configuration for debugging in a secured environment.

### Create VCH Wizard

- Leave the default level of 0 for usual deployments.
- Optionally select level 1, 2, or 3 if you need to debug deployment problems.

**NOTE:** When you use the wizard to deploy a VCH, deployment logging is always verbose. The settings that you apply in the wizard apply to post-deployment operation logging.

### vic-machine Option

```
--debug, -v
```

Optionally specify a debugging level of 1, 2, or 3. If not specified, the debug level is set to 0 and verbose logging is disabled.

```
--debug 3
```

### Syslog

Configure a VCH so that it sends the logs in the `/var/log/vic` folder on the VCH endpoint VM to a syslog endpoint that is not located in the VCH. The VCH also sends container logs to the same syslog endpoint.
Create VCH Wizard

1. Select tcp or udp for the transport protocol.
2. Enter the IP address or FQDN of the syslog endpoint.
3. Optionally enter the port on which with syslog endpoint is exposed if it is not the default of 514.

vic-machine Option

--syslog-address, no short name

Specify the address and port of the syslog endpoint. You must also specify whether the transport protocol is UDP or TCP. If you do not specify a port, the default port is 514.

--syslog-address udp://syslog_host_address:port
--syslog-address tcp://syslog_host_address:port

What to Do Next

If you are using the Create Virtual Container Host wizard, click Next to go to the Compute Capacity settings.

Example vic-machine Commands

The following examples show vic-machine create commands that use the options described in this topic. For simplicity, the examples all use the --no-tlsverify option to automatically generate server certificates but disable client authentication. The examples use an existing port group named vch1-bridge for the bridge network, a port group named vic-public for the public network, designate datastore1 as the image store, and deploy the VCH to cluster1 in datacenter dc1.

Set a Container Name Convention and Container VM Limit

This example vic-machine create command deploys a VCH that specifies --container-name-convention so that the vCenter Server display names of all container VMs include the prefix vch1, followed by the container name, and the suffix project1. It also specifies --containers to limit the number of container VMs that can exist in the VCH to 150.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
```
Configure Debugging and Sylog on a VCH

This example `vic-machine create` command deploys a VCH that sets the deployment debugging level to 3 and sends logs to an external syslog endpoint.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint vcenter_server_certificate_thumbprint
--no-tlsverify
--debug 3
--syslog-address tcp://syslog_host_address
```
Virtual Container Host Compute Capacity

When you deploy a virtual container host (VCH), you must select the compute resource in your virtual infrastructure in which to deploy the VCH. You can optionally configure resource usage limits on the VCH.

Options

The sections in this topic each correspond to an entry in the Compute Capacity page of the Create Virtual Container Host wizard and to the corresponding `vic-machine create` options.

Compute Resource

The host, cluster, or resource pool in which to deploy the VCH.

Deploying VCHs to Clusters With and Without DRS

When deploying VCHs to a cluster, you cannot deploy a VCH to a specific host in the cluster. You deploy the VCH to the cluster. The placement of the VCH, and its associated container VMs, is determined according to whether a given host is appropriate for powering on container VMs. You can also limit the hosts in a cluster on which VCHs are deployed by using VM-Host affinity rules.

- If VMware vSphere Distributed Resource Scheduler (DRS) is enabled on that cluster, DRS manages the placement of the VCH and container VMs on hosts.
- If DRS is not enabled, the cluster selects a host and vSphere Integrated Containers checks whether the selected host is appropriate for powering on container VMs.

VMware recommends that you enable DRS on clusters whenever possible. Deployment does not fail if DRS is not enabled, but a warning is issued in the deployment log.

Clusters that do not implement DRS do not support resource pools. If you deploy a VCH to a cluster on which DRS is disabled, the VCH is created in a VM folder. Consequently, if you specify any options that apply to the memory or CPU configuration of the VCH resource pool, these options are ignored, with a warning in the deployment log.

Create VCH Wizard

Selecting a compute resource is mandatory.

1. Expand the Compute resource inventory hierarchy.
2. Select a standalone host, cluster, or resource pool to which to deploy the VCH.

vic-machine Option

```
--compute-resource, -r
```
If the vCenter Server instance on which you are deploying a VCH only includes a single instance of a standalone host or cluster, `vic-machine create` automatically detects and uses those resources. In this case, you do not need to specify a compute resource when you run `vic-machine create`. If you are deploying the VCH directly to an ESXi host and you do not use the `--compute-resource` option to specify a resource pool, `vic-machine create` automatically uses the default resource pool.

You specify the `--compute-resource` option in the following circumstances:

- A vCenter Server instance includes multiple instances of standalone hosts or clusters, or a mixture of standalone hosts and clusters.
- You want to deploy the VCH to a specific resource pool in your environment.

If you do not specify the `--compute-resource` option and multiple possible resources exist, or if you specify an invalid resource name, `vic-machine create` fails and suggests valid targets for `--compute-resource` in the failure message.

To deploy to a specific resource pool on an ESXi host that is not managed by vCenter Server, specify the name of the resource pool:

```
--compute-resource resource_pool_name
```

To deploy to a vCenter Server instance that has multiple standalone hosts that are not part of a cluster, specify the IPv4 address or fully qualified domain name (FQDN) of the target host:

```
--compute-resource host_address
```

To deploy to a vCenter Server with multiple clusters, specify the name of the target cluster:

```
--compute-resource cluster_name
```

To deploy to a specific resource pool on a standalone host that is managed by vCenter Server, or to a specific resource pool in a cluster, if the resource pool name is unique across all hosts and clusters, specify the name of the resource pool:

```
--compute-resource resource_pool_name
```

To deploy to a specific resource pool on a standalone host that is managed by vCenter Server, if the resource pool name is not unique across all hosts, specify the IPv4 address or FQDN of the target host and name of the resource pool:

```
--compute-resource host_name/resource_pool_name
```

To deploy to a specific resource pool in a cluster, if the resource pool name is not unique across all clusters, specify the full path to the resource pool:

```
--compute-resource cluster_name/Resources/resource_pool_name
```
CPU

Limit the amount of CPU capacity that is available for use by the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool. Specify the CPU capacity in MHz.

NOTE: Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

Create VCH Wizard

In the CPU text box, leave the default value of Unlimited, or optionally enter a limit of between the minimum and maximum shown.

vic-machine Option

--cpu, no short name

Specify a CPU limit value in MHz. If not specified, vic-machine create sets the limit to 0 (unlimited).

--cpu 1024

Memory

Limit the amount of memory that is available for use by the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool. Specify the memory limit value in MB.

NOTE: Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

Create VCH Wizard

In the Memory text box, leave the default value of Unlimited, or optionally enter a limit of between the minimum and maximum shown.

vic-machine Option

--memory, --mem

Specify a limit in MB. If not specified, vic-machine create sets the limit to 0 (unlimited).

--memory 1024

Advanced Options

When using the Create Virtual Container Host wizard, if you change any of the advanced options, leave the Advanced view open when you click Next to proceed to the next page.
If you are using `vic-machine`, the options in this section are exposed in the `vic-machine create help` if you run `vic-machine create --extended-help`, or `vic-machine create -x`.

For information about vSphere memory and CPU shares and reservations, see Allocate Memory Resources, and Allocate CPU Resources in the vSphere documentation.

**CPU Reservation**

Reserve a quantity of CPU capacity for use by the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool. Specify the CPU reservation value in MHz.

**NOTE:** Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

**Create VCH Wizard**

1. Expand Advanced.
2. In the **CPU reservation** text box, leave the default value of 1, or optionally enter a limit of between the minimum and maximum shown.

**vic-machine Option**

```
--cpu-reservation, --cpur
```

Specify a limit in MHz. If not specified, `vic-machine create` sets the reservation to 1.

```
--cpu-reservation 1024
```

**CPU Shares**

Set CPU shares on the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool.

**NOTE:** Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

**Create VCH Wizard**

1. Expand Advanced.
2. In the **CPU shares** text box, leave the default value of Normal, or select Low or High.

**vic-machine Option**

```
--cpu-shares, --cpus
```

Specify the share value as a level or a number, for example high, normal, low, or 163840. If not specified, `vic-machine create` sets the share to normal.
Memory Reservation

Reserve a quantity of memory for use by the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool. Specify the memory reservation value in MB.

**NOTE:** Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

Create VCH Wizard

1. Expand **Advanced**.
2. In the **Memory reservation** text box, leave the default value of 1, or optionally enter a limit of between the minimum and maximum shown.

**vic-machine Option**

```
--memory-reservation, --memr
```

Specify a limit in MB. If not specified, **vic-machine create** sets the reservation to 1.

```
--memory-reservation 1024
```

Memory Shares

Set memory shares on the VCH resource pool. This limit also applies to the container VMs that run in the VCH resource pool.

**NOTE:** Clusters that do not implement DRS do not support resource pools. If you are deploying the VCH to a cluster on which DRS is not enabled and you specify this option, it is ignored. A warning appears in the deployment log.

Create VCH Wizard

1. Expand **Advanced**.
2. In the **Memory shares** text box, leave the default value of **Normal** or select **Low** or **High**.

**vic-machine Option**

```
--memory-shares, --mems
```

Specify the share value as a level or a number, for example **high**, **normal**, **low**, or **163840**. If not specified, **vic-machine create** sets the share to **normal**.

```
--memory-shares low
```
Endpoint VM CPUs

The number of virtual CPUs for the VCH endpoint VM. The default is 1. Set this option to increase the number of CPUs in the VCH endpoint VM.

**NOTE:** In most cases, increase the overall CPU capacity of the VCH resource pool, rather than increasing the number of CPUs on the VCH endpoint VM. This option is mainly intended for use by VMware Support.

Create VCH Wizard

1. Expand **Advanced**.
2. In the **CPUs** text box, leave the default value of 1 or enter a higher number of CPUs.

vic-machine Option

Specify a value of greater than 1. If not specified, `vic-machine create` sets the number of CPUs to 1.

```
--endpoint-cpu, no short name

 --endpoint-cpu number_of_CPUs
```

Endpoint VM Memory

The amount of memory for the VCH endpoint VM. Set this option to increase the amount of memory in the VCH endpoint VM if the VCH will pull large container images.

Image layers are stored in memory during `docker pull`. If you have enabled or inherited memory usage alerts on the VCH endpoint VM and you download an image with a large VMFS virtual disk (VMDK), you might trigger a memory usage alert. You might want to reconfigure the alerts to avoid receiving warnings related to size.

**NOTE:** With the exception of VCHs that pull large container images, increase the overall amount of memory for the VCH resource pool, rather than the amount of memory of the VCH endpoint VM. Use `docker create -m` to set the memory on container VMs. This option is mainly intended for use by VMware Support.

Create VCH Wizard

1. Expand **Advanced**.
2. In the **Memory** text box, leave the default value of 2048 MB, or optionally enter a limit of between the minimum and maximum shown.

vic-machine Option

Specify a value in MB. If not specified, `vic-machine create` sets memory to 2048 MB.

```
--endpoint-memory, no short name

 --endpoint-memory amount_of_memory
```
VM-Host Affinity

When you deploy a virtual container host, you can optionally instruct vSphere Integrated Containers to automatically create a DRS VM group in vSphere for the VCH endpoint VM and its container VMs. If you use this option, you can use the resulting VM group in DRS VM-Host affinity rules, to restrict the set of hosts on which the VCH endpoint VM and its container VMs can run.

You might want to restrict the set of hosts on which the VCH and container VMs run for the following reasons:

- Software licensing, for example if your organization is billed based on the number of physical hosts, sockets, or cores that run a particular piece of software.
- Compliance with internal policies.
- Latency-sensitivity, for workloads that run in an environment with stretched clusters.

For more information about DRS affinity rules, see Using DRS Affinity Rules in the vSphere documentation.

vSphere allows you to express VM-Host affinity rules either as a requirement (must/must not rules) or a preference (should/should not rules).

- If you define must rules, DRS does not allow the VMs to run on other hosts, even in extreme circumstances. For example, vSphere HA does not perform failovers to hosts that are not in the DRS host group.
- If you define should rules, violations produce a log event and are reported as faults on the Configure > vSphere DRS view for the cluster.

To set VM-Host affinity rules on a VCH, you perform the following steps:

- In vSphere, create a DRS host group that includes the set of hosts to which to limit VCH and container VM workloads.
- Deploy a VCH with the vic-machine create --affinity-vm-group option, which automatically creates a DRS VM group in vSphere for the VCH and its container VMs.
- In vSphere, create a VM-Host affinity rule that includes the VM group and the host group. This ensures that the VCH endpoint VM and container VMs in the VM group only run on the hosts that you specified in the host group.

**IMPORTANT:** Because you define VM-host affinity rules on clusters, all of the hosts in a DRS host group must be in the same cluster.

Create VCH Wizard

Create a DRS VM group in vSphere for the VCH endpoint VM and its container VMs. Check this option to create a DRS group with the same name as the VCH. You can use the resulting VM group in DRS VM-Host affinity rules to restrict the set of hosts on which the VCH endpoint VM and its container VMs can run.

1. Expand Advanced.
2. In VM-Host Affinity, check the Create a DRS VM Group for this VCH checkbox to create a DRS group with the same name as the VCH.

vic-machine Option

--affinity-vm-group , no short name
The `--affinity-vm-group` option takes no arguments. You can only use this option when deploying a VCH to a cluster with DRS enabled.

```
--affinity-vm-group
```

When deployment of the VCH finishes, go to **Hosts & Clusters, cluster > Configure > VM/Host Groups** in the vSphere Client. You see a VM group that has the same name as the VCH. You can associate this VM group with a set of specific hosts by creating a host group and adding both the VM group and the host group to a DRS VM-Host affinity rule.

**What to Do Next**

If you are using the Create Virtual Container Host wizard, click **Next** to go to the **Storage Capacity** settings.

**Example vic-machine Commands**

The following examples show `vic-machine create` commands that use the options described in this topic. For simplicity, the examples all use the `--no-tlsverify` option to automatically generate server certificates but disable client authentication. The examples use existing port groups named `vch1-bridge` and `vic-public` for the bridge and public networks, and designate `datastore1` as the image store.

**Deploy to a vCenter Server Cluster with Multiple Datacenters and Datastores**

This example `vic-machine create` command deploys a VCH named `vch1` to the cluster `cluster1` in datacenter `dc1`.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --compute-resource cluster1
 --image-store datastore1
 --bridge-network vch1-bridge
 --public-network vic-public
 --name vch1
 --thumbprint certificate_thumbprint
 --no-tlsverify
```

**Deploy to a Specific Standalone Host in vCenter Server**

This example `vic-machine create` command deploys a VCH on the ESXi host with the FQDN `esxihost1.organization.company.com`.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --bridge-network vch1-bridge
```

87
---public-network vic-public
---image-store datastore1
---compute-resource esxihost1.organization.company.com
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify

Deploy to a Resource Pool on an ESXi Host

This example `vic-machine create` command deploys a VCH into a resource pool named `rp 1`. The resource pool name is wrapped in quotes, because it contains a space. It does not specify an image store, assuming that the host in this example only has one datastore.

```
vic-machine-operating_system create
--target root:password@esxi_host_address
--compute-resource 'rp 1'
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

Deploy to a Resource Pool in a vCenter Server Cluster

This example `vic-machine create` command deploys a VCH into a resource pool named `rp 1`. In this example, the resource pool name `rp 1` is unique across all hosts and clusters, so it only specifies the resource pool name.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource 'rp 1'
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

If the name of the resource pool is not unique across all clusters, for example if two clusters each contain a resource pool named `rp 1`, you must specify the full path to the resource pool in the `compute-resource` option, in the format `cluster_name/Resources/resource_pool_name`.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource 'cluster 1'/Resources/'rp 1'
--image-store datastore1
--bridge-network vch1-bridge
```
Set Limits on Resource Use

This example `vic-machine create` command sets resource limits on the VCH by imposing memory and CPU reservations, limits, and shares.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--memory 1024
--memory-reservation 1024
--memory-shares low
--cpu 1024
--cpu-reservation 1024
--cpu-shares low
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

Deploy VCH that specifies Host Affinity Group

This example `vic-machine create` command deploys a VCH that specifies `--affinity-vm-group`. After deployment, the VCH and all of its container VMs belong to an automatically created DRS VM affinity group that has the same name as the the VCH.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
--affinity-vm-group
```
Virtual Container Host Storage Capacity

Virtual container hosts (VCHs) require a datastore in which to store container image files, container VM files, and the files for the VCH itself. You can also specify one or more datastores in which container developers can create container volumes.

- Specify the Image Datastore
- Specify Volume Datastores

For an overview of vSphere Integrated Containers storage, watch the vSphere Integrated Containers Storage video on the VMware Cloud-Native YouTube Channel:

https://www.youtube.com/watch?v=WrVHbjTZHrs

Storage Requirements and Limitations

The storage that you select for use as image and volume stores for VCHs must meet the following requirements.

- vSphere Integrated Containers Engine fully supports VMware vSAN datastores.
- vSphere Integrated Containers Engine supports all alphanumeric characters, hyphens, and underscores in datastore paths and datastore names, but no other special characters.
- Datastores that you specify as image and volume stores should ideally be accessible to all of the hosts in a cluster. Specifying storage that is not accessible to all of the hosts in a cluster is possible, but might result in all of your container VMs and container volumes being placed on the same host.

  - If you specify different datastores in the different datastore options, and if no single host in a cluster can access all of the datastores, VCH deployment fails with an error.

    No single host can access all of the requested datastores.
    Installation cannot continue.

  - If you specify different datastores in the different datastore options, and if only one host in a cluster can access all of them, VCH deployment succeeds with a warning.

    Only one host can access all of the image/container/volume datastores. This may be a point of contention/performance degradation and HA/DRS may not work as intended.

- VCHs do not support datastore name changes. If a datastore changes name after you have deployed a VCH that uses that datastore, that VCH will no longer function.

- It is not possible to reconfigure a VCH to use a different image store after deployment. To change an image store, you must create a new VCH that uses the new image store, pull any required images into that store, and redeploy containers on the new VCH.
Specify the Image Datastore

When you deploy a virtual container host (VCH), you must specify a datastore or datastore folder for use as the image store. The image store is the vSphere datastore in which to store container image files, container VM files, and the files for the VCH itself, including a creation log file.

You can also optionally change the base image size for container images.

Options

The sections in this topic each correspond to an entry in the Image Datastore section of the Storage Capacity page of the Create Virtual Container Host wizard, and to the corresponding `vic-machine create` options.

Datastore

If you are deploying the VCH to a vCenter Server cluster, the datastore that you designate as the image store must be shared by at least two, but preferably all, ESXi hosts in the cluster. Using non-shared datastores is possible, but limits the use of vSphere features such as vSphere vMotion® and VMware vSphere Distributed Resource Scheduler™ (DRS). Using non-shared datastores might lead to situations in which all container VMs and image files are stored on a single host.

You can specify a datastore folder to use as the image store. If the folder that you specify does not already exist, `vic-machine create` creates it.

When you deploy a VCH `vic-machine` creates the following set of folders in the image datastore:

- A folder that contains the VM files of the VCH:
  
  `datastore_name/vch_name`

  This folder also includes a VCH creation log file named `vic-machine_timestamp_create_id.log`.
- A key-value store folder for the VCH:
  
  `datastore_name/vch_name/kvstores`
- A folder in which to store all of the container images that you pull into the VCH.
  
  - If you designate the whole datastore as the image store, images are stored in the following location:
    
    `datastore_name/vch_name/VIC/vch_uuid/images`

  - If you designate a datastore folder as the image store, images are stored in the following location:
    
    `datastore_name/path_to_folder/VIC/vcu_uuid/images`
By specifying a datastore folder, you can designate the same datastore folder as the image store for multiple VCHs. Only one vic folder is created in the datastore, but it contains one vch_uuid/images folder for each VCH that you deploy. By creating one vch_uuid/images folder for each VCH, vSphere Integrated Containers Engine limits the potential for conflicts of image use between VCHs, even if you share the same image store folder between multiple hosts.

When container developers create and run containers, vSphere Integrated Containers Engine stores the files for container VMs at the top level of the image store, in folders that have the same names as the container VMs.

Create VCH Wizard

Specifying an image store is mandatory.

1. Select a datastore from the Datastore drop-down menu.
   Select a datastore that is shared by at least two, but preferably all, hosts in a cluster.

2. In the File folder text box, optionally enter the path to a folder in the specified datastore, to use to store image files.

vic-machine Option

--image-store, -i

Specifying an image store is mandatory if there is more than one datastore in your vSphere environment. If there is only one datastore in your vSphere environment, vic-machine uses it automatically and you do not need to specify the datastore. If you do not specify the --image-store option and multiple possible datastores exist, or if you specify an invalid datastore name, vic-machine create fails and suggests valid datastores in the failure message.

To specify a whole datastore as the image store, specify the datastore name in the --image-store option:

--image-store datastore_name

To specify a datastore folder to use as the image store, include the path to the folder in the --image-store option:

--image-store datastore_name/path/to/folder

Base Image Size

The size of the base image from which to create other container images. You should not normally need to use this option. Specify the size in GB or MB. The default size is 8GB. Images are thin-provisioned, so they do not usually consume 8GB of space. For information about container base images, see Create a base image in the Docker documentation.

Create VCH Wizard

1. In the Max Container VM image size text box, leave the default value of 8, or enter a different value.
2. Select GB or MB.
**vic-machine Option**

```
--base-image-size , no short name
```

Specify a value in GB or MB. If not specified, `vic-machine create` sets the image size to 8 GB.

```
--base-image-size 4GB
```

**Storage Quota**

To prevent a VCH from using too much storage capacity, for example when pulling large images into the VCH or running large numbers of container VMs from large images, you can set a limit on the amount of space in the image store that a VCH can consume. The storage quota is displayed in the output when you run `docker info` against a VCH.

**Create VCH Wizard**

This option is not available in the Create VCH wizard

**vic-machine Option**

```
--storage-quota , --sq
```

Specify a value in GB. If not specified, `vic-machine create` does not set a maximum limit on the amount of storage that the VCH can consume.

```
--storage-quota 500
```

**What to Do Next**

If you are using the Create Virtual Container Host wizard, scroll down the page to specify Volume Datastores.

**Example vic-machine Command**

This example `vic-machine create` command deploys a VCH that uses the folder `vch1_images` in `datastore1` as the image store, and limits the amount of space that the VCH can use to 500GB.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --compute-resource cluster1
 --image-store datastore1/vch1_images
 --bridge-network vch1-bridge
 --public-network vic-public
 --name vch1
```
--thumbprint certificate_thumbprint
--storage-quota 500
--no-tlsverify
Specify Volume Datastores

Volume stores for virtual container hosts (VCHs) are storage locations in your infrastructure, in which to create volumes when container developers use the `docker volume create` command or deploy containers that use volumes. You can specify a mix of volume stores backed by vSphere datastores or NFSv3 shares. The volume stores that are available to a VCH appear under `VolumeStores` when you run `docker info` against the VCH.

About Volume Stores

For information about how Docker containers use volumes, see Use volumes in the Docker documentation.

To specify a volume store, you provide the datastore name or NFS mount point, an optional path to a specific folder in that datastore, and a volume store label.

The label that you specify is the volume store name that Docker uses. For example, the volume store label appears in the information for a VCH when container developers run `docker info`. Container developers specify the volume store label in the `docker volume create --opt VolumeStore=volume_store_label` option when they create a volume. The volume store label must be unique.

You can create multiple volume stores for a single VCH.

**IMPORTANT**: If you do not specify a volume store when you create a VCH, no volume store is created by default and container developers cannot create or run containers that use volumes. You can add volume stores to a VCH after deployment by running `vic-machine configure --volume-store`. For information about adding volume stores after deployment, see Add Volume Stores.

If you delete a VCH, by default any volumes that the VCH manages remain available in the volume store. There are different ways to delete volumes that are no longer required:

- Delete the volumes manually in the vSphere Client.
- Run `docker rm -v`.
- Run `vic-machine delete` with the `--force` option.
- Select Delete persistent and anonymous volumes when you delete the VCH in the vSphere Client.

vSphere Datastores

If you are deploying the VCH to a vCenter Server cluster, the vSphere datastores that you designate as volume stores should be shared by at least two, but preferably all, ESXi hosts in the cluster. Using non-shared datastores is possible and deployment succeeds, but results in a warning that this configuration limits the use of vSphere features such as vSphere vMotion and DRS.

If you specify a vSphere datastore without specifying a datastore folder, vSphere Integrated Containers Engine creates a folder named `VIC/volumes` at the top level of the target datastore. Any volumes that container developers create will appear in the `VIC/volumes` folder.
If you specify a vSphere datastore and a datastore folder, vSphere Integrated Containers Engine creates a folder named `volumes` in the location that you specify. If the folders that you specify do not already exist on the datastore, vSphere Integrated Containers Engine creates the appropriate folder structure. Any volumes that container developers create will appear in the `path/volumes` folder.

vSphere Integrated Containers Engine creates the `volumes` folder independently from the folders for VCH files so that you can attach existing volume stores to different VCHs. You can assign an existing volume store that already contains data to a VCH by either creating a new VCH or by running `vic-machine configure --volume-store` on an existing one. You can only assign a volume store to a single VCH at a time.

**IMPORTANT**: If multiple VCHs use the same datastore for their volume stores, specify a different datastore folder for each VCH. Do not designate the same datastore folder as the volume store for multiple VCHs.

### NFS Volume Stores

If you use NFS volume stores, concurrently running containers can share the volumes from those stores, whereas volumes on vSphere datastores cannot be shared by concurrently running containers. For example, you can use shared NFS volume stores to share configuration information between running containers, or to allow running containers to access the data of another container. Another use case for NFS volume stores is a build system, in which you might have multiple identical containers that are potentially running parallel tasks, and you want to store their output in a single place.

To use shared NFS volume stores, it is recommended that the NFS share points that you designate as the volume stores be directly accessible by the network that you use as the container network. For information about container networks, see the description of the `--container-network` option.

**IMPORTANT**: When container developers run `docker info` or `docker volume ls` against a VCH, there is currently no indication whether a volume store is backed by vSphere or by an NFS share point. Consequently, you should include an indication that a volume store is an NFS share point in the volume store label.

You cannot specify the root folder of an NFS server as a volume store.

### About NFS Volume Stores and Permissions

vSphere Integrated Containers mounts NFS volumes as `root`. Consequently, if containers are to run as non-root users, the volume store must be configured with the correct permissions so that the non-root users can access it.

Permissions are determined by the NFS server. If a container runs as non-root and it attempts to write into the NFS mount, the permissions on the server side must grant the accessing user the ability to perform the requested actions. To allow this, the `other` (also known as `world`) permissions must be set. Alternatively, the user that is accessing the NFS mount should be part of the same `Group` that owns the share. To facilitate this, you can configure the share point with an anonymous user. You can also use `root_squash`, which is designed to map the root user to the anonymous user. Using `all_squash` maps all UIDs/GIDs to the anonymous UID/GID.

In this case, you must configure the volume store with a UID/GID for creation and reading. This is because there will be many containers potentially attempting to read or write to the same location. You make this configuration on the NFS server. The configuration of the sharepoint is dependent on your setup:

- If `squash_root` is enabled, the `anon` user or group must have permissions on the NFS sharepoint. This is the
preferred option for production environments.

- If `no_squash_root` is enabled, the `root` user or group needs permissions on the NFS sharepoint. This option is acceptable and works, but is recommended for proof-of-concept deployments rather than production.
- The `root` user must also be a member of the GID that you configure the VCH to use.

If you encounter connection difficulties, and you are not sure whether the squash is the problem, you can enable `all_squash` on the sharepoint and configure the `anon` user as the owner of the endpoint.

### Testing and Debugging NFS Volume Store Configuration

When you deploy a VCH, if you configured an NFS volume store and the NFS share point is not accessible by the VCH, the following errors appear in the output of `vic-machine create`:

```
DEBU[0269] Portlayer has established volume stores (default others)
ERRO[0269] VolumeStore (shared) cannot be brought online - check network, nfs server, and --volume-store configurations
ERRO[0269] Not all configured volume stores are online - check port layer log via vicadmin
```

More detailed information about the NFS share point appears in the Port Layer Service logs, that you can access by using the **VCH Administration Portal** for the VCH:

```
INFO op=363.7: Creating nfs volumestore shared on nfs://nfs_server/not-there
DEBUG op=363.7: Mounting nfs://nfs_server/not-there
Failed to connect to portmapper: dial tcp nfs_server:111: getsockopt: connection refused
ERROR op=363.7: error occurred while attempting to mount volumestore (shared). err: (dial tcp nfs_server:111: getsockopt: connection refused)
ERROR op=363.7: dial tcp nfs_server:111: getsockopt: connection refused
```

**NOTE:** The `DEBUG` line in the example above is only included if you run the VCH with a `debug` setting of 1 or greater.

After you deploy a VCH, you can test that an NFS share point is configured correctly so that containers can access it by running the following commands:

```
docker volume create --name test --opt VolumeStore=nfs
docker run -it test:/mnt/test alpine /bin/ash
```

You can also test the configuration mounting the NFS share point directly in the VCH endpoint VM. For information about how to perform this test, see [Install Packages in the Virtual Container Host Endpoint VM](#) and [Mount an NFS Share Point in the VCH Endpoint VM](#).

Another option is to start a container that has an NFS client and attempt to mount the NFS share point in that container. This is a good option for VCH users that do not have access to `vic-machine` and cannot log in to the VCH by using SSH. This is also a good way to test access to NFS volume stores through firewalls and for VCHs that implement container networks. Containers connect to NFS volume stores over the network stack of the container VM, so the containers must be able to connect to the NFS server.
Anonymous Volumes

If you only require one volume store, set the volume store label to `default`. If you set the volume store label to `default`, container developers do not need to specify the `--opt VolumeStore=volume_store_label` option when they run `docker volume create`. Also, some common container images require the presence of a `default` volume store in order to run.

**IMPORTANT:** If container developers intend to create containers that are attached to anonymous or named volumes by using `docker create -v`, you must create a volume store with a label of `default`.

Add Volume Datastores

This section describes the Volume Datastores section of the Storage Capacity page of the Create Virtual Container Host wizard, and the corresponding `vic-machine create` option.

Create VCH Wizard

1. Optionally enable anonymous volumes by setting the **Enable anonymous volumes** switch to the green ON position.
   
   Enabling anonymous volumes automatically adds the label `default` to the first volume datastore.

2. Select a datastore for the first volume store from the **Datastore** drop-down menu.

3. In the **Folder** text box, optionally enter the path to a folder in the specified datastore.
   
   If the folders that you specify in the path do not already exist on the selected datastore, vSphere Integrated Containers Engine creates the appropriate folder structure.

4. If you did not enable anonymous volumes, or if this is an additional volume store, provide a label for the volume store in the **Volume store name** text box.

5. Optionally click the `+` button to add more volume datastores to the VCH, and repeat the proceeding steps for each additional volume datastore.

**NOTE:** It is not currently possible to specify an NFS share point as a volume store in the Create Virtual Container Host wizard. If you use the wizard to create VCHs, after deployment, run `vic-machine configure` with the `--volume-store` option to add NFS share points to the VCH. For information about adding volume stores after deployment, see Add Volume Stores.

vic-machine Option

`--volume-store`, `--vs`

To specify a whole vSphere datastore for use as a volume store, provide the datastore name and a volume store label:

```
--volume-store datastore_name:volume_store_label
```

Optionally use the `ds://` prefix to specify a datastore that is backed by vSphere:
--volume-store ds://datastore_name:volume_store_label

To specify a volume store in a datastore folder, add the path to the appropriate folder:

--volume-store datastore_name/datastore_path:volume_store_label

To specify an NFS share point as a volume store, use the nfs:// prefix and the path to an NFS server and a shared mount point:

nfs://nfs_server/path_to_share_point:nfs_volume_store_label

You can also specify the URL, UID, and GID of a shared NFS mount point when you specify an NFS share point. Connections are made over TCP. If you do not specify a UID and GID, vSphere Integrated Containers Engine uses the anon UID and GID when creating and interacting with the volume store. The anon UID and GID is 1000:1000.

--volume-store nfs://nfs_server/path_to_share_point?
uid=1234&gid=5678:nfs_volume_store_label

NOTES:

- If your NFS server uses a different anon UID/GID to the default, you must specify the UID/GID in the --volume-store option. Configuring a VCH to use a different default anon UID/GID for NFS volume stores is not supported. For containers, the user that is running the process in the container needs to have the correct permissions on the mount to read and write.
- vSphere Integrated Containers mounts NFS volumes as root. Consequently, if you specify a UID/GID, it must be valid for root. Additionally, if containers are to run as non-root users, the export of the volume must grant the correct permissions to the non-root users so that they can access the volume store.
- For more information about the preceding points, see About NFS Volume Stores and Permissions above.
- To test the connections to NFS share points, you can mount the NFS server from within the VCH endpoint VM. For more information, see Mount an NFS Share Point in the VCH Endpoint VM.

Use the label default to allow container developers to create anonymous volumes:

--volume-store ds://datastore_name:default

--volume-store nfs://nfs_server/path_to_share_point:default

You can specify the --volume-store option multiple times, and add a mixture of vSphere datastores and NFS share points to a VCH:

--volume-store datastore_name/path:volume_store_Label_1
--volume-store datastore_name/path:volume_store_Label_2
--volume-store nfs://nfs_server/path_to_share_point:nfs_volume_store_Label
If you specify an invalid vSphere datastore name or an invalid NFS share point URL, `vic-machine create` fails and suggests valid datastores.

**What to Do Next**

If you are using the Create Virtual Container Host wizard, click Next to go to the VCH Networks settings.

**Example vic-machine Command**

This example `vic-machine create` command deploys a VCH with 3 volume stores:

- A default volume store in the `volumes` folder on datastore 1.
- A second volume store named `volume_store_2` in the `volumes` folder on datastore 2.
- A volume store named `shared_volume` in a NFS share point, from which containers can mount shared volumes.

```bash
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--bridge-network vch1-bridge
--public-network vic-public
--image-store 'datastore 1'
--volume-store 'datastore 1'/volumes:default
--volume-store 'datastore 2'/volumes:volume_store_2
--volume-store nfs://nfs_server/path/to/share/point:shared_volume
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

**Troubleshooting**

VCHs require datastores to be writable. For information about how to check whether a shared NFS datastore is possibly mounted as read-only, see VCH Deployment with a Shared NFS Datstore Fails with an Error About No Single Host Being Able to Access All Datastores.
Virtual Container Host Networks

You must configure networks on a virtual container host (VCH) that tie your Docker development environment into the vSphere infrastructure. You define the networks that are available to a VCH when you deploy the VCH.

You can direct traffic between containers, the VCH, the external Internet, and your vSphere environment to different networks. VCH network interfaces can be either standard vSphere port groups, NSX Data Center for vSphere logical switches, or NSX-T Data Center logical switches.

**IMPORTANT:** For information about VCH networking requirements, see Networking Requirements for VCH Deployment.

Bridge Networks

In Docker terminology, the VCH bridge network corresponds to the default bridge network on a Docker host. You must create a dedicated vSphere port group, or an NSX Datacenter for vSphere logical switch, or an NSX-T Data Center logical switch for the bridge network for every VCH. For information about VCH bridge networks, see Configure Bridge Networks.

Public Network

The network that container VMs and VCHs use to access the Internet. The VCH endpoint VM must be able to obtain an IP address on this network. You can use the same vSphere port group, or NSX Datacenter for vSphere logical switch, or NSX-T Data Center logical switch as the public network for multiple VCHs. You cannot use the same network for the public network as you use for the bridge network.

You can share the public network with the client and management networks. For information about VCH public networks, see Configure the Public Network.

Client Network

You can isolate traffic between Docker clients and the VCH from traffic on the public network by specifying a dedicated network interface for client connections. You can use the same network as the client network for multiple VCHs. For information about VCH client networks, see Configure the Client Network.

Management Network

You can also isolate the traffic between the VCH and vCenter Server and ESXi hosts from traffic on the public network by specifying a dedicated management network interface. You can use the same network as the management network for multiple VCHs. For information about VCH management networks, see Configure the Management Network.
Container Networks

User-defined networks that you can use to connect container VMs directly to a routable network. Container networks allow vSphere administrators to make vSphere networks directly available to containers. Container networks are specific to vSphere Integrated Containers and have no equivalent in regular Docker, and provide distinct advantages over using Docker user-defined networks. For information about container networks, including their advantages over Docker user-defined networks, see Configure Container Networks.

Proxy Servers

For information about configuring VCHs to use proxy servers, see Configure VCHs to Use Proxy Servers.

Host Firewall Configuration

When you specify different networks for the different types of traffic, `vic-machine create` checks that the firewalls on the ESXi hosts allow connections to port 2377 from those networks. If access to port 2377 on one or more ESXi hosts is subject to IP address restrictions, and if those restrictions block access to the networks that you specify, `vic-machine create` fails with a firewall configuration error:

```
Firewall configuration incorrect due to allowed IP restrictions on hosts: "/ha-datacenter/host/localhost.localdomain/localhost.localdomain"
Firewall must permit dst 2377/tcp outbound to the VCH management interface
```

For information about how to open port 2377, see Open the Required Ports on ESXi Hosts.
Configure Bridge Networks

Bridge networks are the network or networks that container VMs use to communicate with each other. Every virtual container host (VCH) must have a dedicated bridge network.

In Docker terminology, the bridge network on a VCH corresponds to the default bridge network, or docker0 interface, on a Docker host. Container application developers can use docker network create to create additional, user-defined bridge networks when they run containers. For information about default bridge networks and user-defined networks, see Docker container networking in the Docker documentation.

IMPORTANT:

- For information about VCH networking requirements, see Networking Requirements for VCH Deployment.
- If you use NSX-T Data Center logical switches, it is not mandatory for T1 or T0 routers to be present. The bridge network does not use layer 3, so does not require T1 and T0 routers.

Options

The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container Host wizard, and to the corresponding vic-machine create options.

Bridge Network

A network interface that container VMs use to communicate with each other.

Before you deploy a VCH, you must create a VMware vSphere Distributed Switch and a port group, an NSX Data Center for vSphere logical switch, or an NSX-T Data Center logical switch for the bridge network. For information about how to create a port group or logical switch, see Networking Requirements for VCH Deployment.

IMPORTANT

- You must create a dedicated vSphere port group, or an NSX Datacenter for vSphere logical switch, or an NSX-T Data Center logical switch for the bridge network for every VCH. Do not specify the same port group or logical switch as the bridge network for multiple VCHs. Sharing a bridge network between VCHs might result in multiple container VMs being assigned the same IP address.
- Do not use the bridge network for any of the other VCH networking options.
- Do not use the bridge network for any other VM workloads.

Create VCH Wizard

Select an existing port group or logical switch from the Bridge network drop-down menu. It is mandatory to specify a bridge network.

vic-machine Option

--bridge-network, -b
You designate the bridge network by specifying an existing port group or logical switch in the `vic-machine create --bridge-network` option.

The `--bridge-network` option is **mandatory** if you are deploying a VCH to vCenter Server.

The `--bridge-network` option is **optional** if you are deploying a VCH to an ESXi host that is not managed by vCenter Server. In this case, if you do not specify `--bridge-network`, `vic-machine` creates a vSphere Distributed Switch and a port group that each have the same name as the VCH. You can optionally specify this option to assign an existing port group or logical switch for use as the bridge network for container VMs. You can also optionally specify this option to create a new port group that has a different name to the VCH.

```
--bridge-network port_group_or_logical_switch_name
```

If you do not specify `--bridge-network` or if you specify an invalid port group or logical switch name, `vic-machine create` fails and suggests valid port groups or logical switches.

### Bridge Network Range

A range of IP addresses that additional bridge networks can use when container application developers use `docker network create` to create new user-defined networks. VCHs create these additional user-defined bridge networks by using IP address segregation within a set address range, so user-defined bridge networks do not require you to assign dedicated port groups. By default, all VCHs use the standard Docker range of 172.16.0.0/12 for additional user-defined networks. You can override the default range if that range is already in use in your network. You can reuse the same network address range across all VCHs.

When you specify a bridge network IP range, you specify the IP range as a CIDR.

- In releases up to and including vSphere Integrated Containers 1.5.1, the smallest subnet that you can specify is /16.
- In vSphere Integrated Containers 1.5.2 and later, the default subnet is /16, but you can configure different default subnets. If you set a subnet value in the `--bridge-network-range` option that is larger than the default of 16, you must also use the `--bridge-network-width` option to increase the size of the default subnet mask for user-defined bridge networks.

### Create VCH Wizard

If the default range of 172.16.0.0/12 is in use in your network, enter a new range as a CIDR. For example, enter `192.168.100.0/16`.

**vic-machine Option**

```
--bridge-network-range, --bnr
```

If the default range of 172.16.0.0/12 is in use in your network, specify a new range in the `--bridge-network-range` option.

```
--bridge-network-range network_address/subnet
```
If you specify an invalid value for `--bridge-network-range`, `vic-machine create` fails with an error.

**Bridge Network Width**

If you need to configure bridge networks to have subnet masks that are smaller than the default of 16 bits, you can set a new default bridge network width. For example, if container application developers use `docker network create` to create multiple new user-defined networks in their VCHs, you might need to configure a smaller subnet mask to avoid overuse of the VLANs that are assigned to those VCHs. By default the IP range is 172.16.0.0/12 and the network allocation width is /16.

The value that you specify must be larger than the subnet value specified in the `--bridge-network-range` option. This is because a larger subnet mask value results in a smaller range of available IP addresses. So, for example, if you set the default bridge network range to 172.16.0.0/22, you must set the default bridge network width to 22 or greater. If you use the default bridge network range subnet mask value of 16, you must set a value of 16 or more.

If you change the default bridge network width, any additional bridge networks that container application developers create in the VCH will have the specified subnet mask. Container application developers can override the default value by specifying `docker network create --subnet` when they create a new bridge network.

**NOTE:** This option is available in vSphere Integrated Containers 1.5.2 and later.

**Create VCH Wizard**

Enter a value in the **Bridge network width** text box. For example, enter 24 to reduce the size of the subnet mask.

**vic-machine Option**

```
--bridge-network-width, --bnw
```

If the default subnet mask for the bridge network is too large, specify a new subnet mask in the `--bridge-network-width` option.

```
--bridge-network-width 24
```

**What to Do Next**

If you are using the Create Virtual Container Host wizard, stay on the Configure Networks page and **Configure the Public Network** settings.

**Example vic-machine Command**

This example `vic-machine create` command deploys a VCH that designates an existing network named `vch1-bridge` as the bridge network. It specifies IP addresses in the range 192.168.100.0/16 for use by user-defined bridge networks.
vic-machine-operating_system create
  --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
  --compute-resource cluster1
  --image-store datastore1
  --bridge-network vch1-bridge
  --bridge-network-range 192.168.100.0/16
  --public-network vic-public
  --name vch1
  --thumbprint certificate_thumbprint
  --no-tlsverify
Configure the Public Network

The public network is the network that container VMs and the virtual container host (VCH) use to connect to the Internet. VCHs use the public network to pull container images from public registries, for example from Docker Hub. Container VMs that use port mapping expose network services on the public network. In Docker terminology, the public network corresponds to the host network.

**IMPORTANT**: For information about VCH networking requirements, see Networking Requirements for VCH Deployment.

Options

The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container Host wizard, and to the corresponding `vic-machine create` options.

Public Network

You designate a specific network for traffic from container VMs and the VCH to the Internet by specifying a public network when you deploy the VCH.

**IMPORTANT**:

- If you use the Create Virtual Container Host wizard to create VCHs, it is **mandatory** to use an existing port group or logical switch for the public network.
- If you use `vic-machine` to deploy VCHs, by default the VCH uses the VM Network, if present, for the public network. If the VM Network is present, it is therefore not mandatory to use a dedicated network interface for the public network, but it is strongly recommended. Using the default VM Network for the public network instead of a dedicated network interface prevents vSphere vMotion from moving the VCH endpoint VM between hosts in a cluster. If the VM Network is not present, you must create a dedicated port group or logical switch for the public network.
- You can use the same network as the public network for multiple VCHs. You cannot use the same network for the public network as you use for the bridge network.
- You can share the public network network with the client and management networks. If you do not configure the client and management networks to use specific networks, those networks use the settings that you specify for the public network.
- The port group or logical switch must exist before you create the VCH. For information about how to create a port group or logical switch, see Networking Requirements for VCH Deployment.
- You cannot use `vic-machine configure` to change the public network setting after you deploy the VCH.

Create VCH Wizard

Select an existing port group or logical switch from the **Public network** drop-down menu.

**NOTE**: If you use the Create Virtual Container Host wizard, specifying a public network is **mandatory**.
**vic-machine Option**

---public-network, --pn

A network interface that container VMs and VCHs use to connect to the Internet. Ports that containers that are connected to the default bridge network expose with `docker create -p` are made available on the public network of the VCH endpoint VM via network address translation (NAT), so that containers can publish network services.

**NOTE:** vSphere Integrated Containers adds a new capability to Docker that allows you to directly map containers to a network by using the `--container-network` option. This is the recommended way to deploy container services with vSphere Integrated Containers. For more information, see Configure Container Networks.

You designate the public network by specifying an existing port group or logical switch in the `vic-machine create` option.

```
--public-network port_group_or_logical_switch_name
```

If you do not specify this option, containers use the VM Network for public network traffic. If you do not specify this option and the VM Network is not present, or if you specify an invalid port group or logical switch name, `vic-machine create` fails and suggests valid port group or logical switches.

**Static IP Address**

By default, vSphere Integrated Containers Engine uses DHCP to obtain an IP address for the VCH endpoint VM on the public network. You can optionally configure a static IP address for the VCH endpoint VM on the public network.

- You can only specify one static IP address on a given interface. If either of the client or management networks shares a network with the public network, you can only specify a static IP address on the public network. All of the networks that share that network use the IP address that you specify.
- If you set a static IP address for the VCH endpoint VM on the public network, you must specify a corresponding gateway address.

**Create VCH Wizard**

1. Select the **Static IP** radio button.
2. Enter an IP address with a network mask in the **IP Address** text box, for example `192.168.1.10/24`.

The Create Virtual Container Host wizard only accepts an IP address for the public network. You cannot specify an FQDN.

**vic-machine Option**

---public-network-ip, no short name

You specify addresses as IPv4 addresses with a network mask.

```
--public-network-ip 192.168.1.10/24
```
You can also specify addresses as resolvable FQDNs.

```
--public-network-ip=vch27-team-a.internal.domain.com
```

### Gateway

The gateway to use if you specify a static IP address for the VCH endpoint VM on the public network. If you specify a static IP address on the public network, you must specify a gateway for the public network.

You specify gateway addresses as IP addresses without a network mask.

#### Create VCH Wizard

Enter the IP address of the gateway in the **Gateway** text box, for example `192.168.1.1`.

#### vic-machine Option

```
--public-network-gateway, no short name
```

Specify a gateway address as an IP address without a network mask in the `--public-network-gateway` option.

```
--public-network-gateway 192.168.1.1
```

### DNS Server

A DNS server for the VCH endpoint VM to use on the public, client, and management networks.

- If you specify a DNS server, vSphere Integrated Containers Engine uses the same DNS server setting for all three of the public, client, and management networks.
- If you do not specify a DNS server and you specify a static IP address for the VCH endpoint VM on all three of the client, public, and management networks, vSphere Integrated Containers Engine uses the Google public DNS service.
- If you do not specify a DNS server and you use DHCP for all of the client, public, and management networks, vSphere Integrated Containers Engine uses the DNS servers that DHCP provides.

#### Create VCH Wizard

Enter a comma-separated list of DNS server addresses in the **DNS server** text box, for example `192.168.10.10,192.168.10.11`.

If you are using the Create Virtual Container Host wizard and you set a static IP address on the public network, you must configure a DNS server.

#### vic-machine Option

```
--dns-server, None
```

111
You can specify `--dns-server` multiple times, to configure multiple DNS servers.

```bash
--dns-server 192.168.10.10
--dns-server 192.168.10.11
```

**What to Do Next**

If you are using the Create Virtual Container Host wizard, the bridge network and the public network are the only networks that it is mandatory to configure.

- To configure advanced network settings, remain on the Configure Networks page, and see the following topics:
  - Configure the Client Network
  - Configure the Management Network
  - Configure VCHs to Use Proxy Servers
  - Configure Container Networks
- If you have finished configuring the network settings, click **Next** to configure VCH Security settings.

**Example  vic-machine Command**

This example `vic-machine create` command deploys a VCH that

- Directs public network traffic to an existing network named `vic-public`.
- Sets two DNS servers.
- Sets a static IP address and gateway for the VCH endpoint VM on the public network.
- Does not specify either of the `--management-network` or `--client-network` options. Consequently, management and client traffic also routes over `vic-public` because those networks default to the public network setting if they are not set.

```bash
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--public-network-ip 192.168.1.10/24
--public-network-gateway 192.168.1.1
--dns-server 192.168.10.10
--dns-server 192.168.10.11
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```
Configure the Client Network

The client network is the network on which the VCH endpoint VM makes the Docker API available to Docker clients. By designating a specific client network, you isolate Docker endpoints from the public network. Virtual container hosts (VCHs) access vSphere Integrated Containers Management Portal and vSphere Integrated Containers Registry over the client network.

**IMPORTANT:** The network on which you run `vic-machine` commands must be able to communicate with the client network on the VCH. The client interface must be able to route back to the machine on which you run `vic-machine` commands.

For information about VCH networking requirements, see [Networking Requirements for VCH Deployment](#).

Options

The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container Host wizard, and to the corresponding `vic-machine create` options.

Client Network

An existing port group or logical switch on which the VCH makes the Docker API available to Docker clients. Docker clients use this network to issue Docker API requests to the VCH.

- If you use a dedicated network for the client network, the port group or logical switch must exist before you create the VCH. For information about how to create a port group or logical switch, see [Networking Requirements for VCH Deployment](#).
- You can use the same network as the client network for multiple VCHs.

If you do not specify this option, the VCH uses the public network for client traffic.

Create VCH Wizard

1. Expand the Advanced view.
2. Select an existing port group or logical switch from the Client network drop-down menu.

`vic-machine` Option

```bash
--client-network, --cln
```

You designate the client network by specifying an existing port group or logical switch in the `vic-machine create --client-network` option.

```bash
--client-network port_group_or_logical_switch_name
```
If you specify an invalid port group or logical switch name, `vic-machine create` fails and suggests valid port group or logical switches.

## Static IP Address

By default, vSphere Integrated Containers Engine uses DHCP to obtain an IP address for the VCH endpoint VM on the client network. You can optionally configure a static IP address for the VCH endpoint VM on the client network.

- You can only specify one static IP address on a given interface. If the client network shares a network with the public network, you can only specify a static IP address on the public network. All of the networks that share that network use the IP address that you specify for the public network.
- If you set a static IP address for the VCH endpoint VM on the public network, you must specify the gateway address for the public network. If the client network is L2 adjacent to its gateway, you do not need to specify the corresponding gateway for the client network.
- If the client network shares a network with the management network, and the public network does not use that network, you can set a static IP address for the VCH endpoint VM on either of the client or management networks.
- If you assign a static IP address to the VCH endpoint VM on the client network, and you do not specify one of the TLS options, vSphere Integrated Containers Engine uses this address as the Common Name with which to auto-generate trusted CA certificates. If you do not specify one of the TLS options, two-way TLS authentication with trusted certificates is implemented by default when you deploy the VCH with a static IP address on the client network. If you assign a static IP address to the VCH endpoint VM on the client network, vSphere Integrated Containers Engine creates the same certificate and environment variable files as described in the `--tls-cname` option.

**IMPORTANT**: If the client network shares a network with the public network you cannot set a static IP address for the endpoint VM on the client network. To assign a static IP address to the VCH endpoint VM you must set a static IP address on the public network. In this case, vSphere Integrated Containers Engine uses the public network IP address as the Common Name with which to auto-generate trusted CA certificates, in the same way as it would if you had set a static IP on the client network.

You specify the address as an IPv4 address with a network mask.

### Create VCH Wizard

1. Select the Static IP radio button.
2. Enter an IP address with a network mask in the IP Address text box, for example `192.168.3.10/24`.

The Create Virtual Container Host wizard only accepts an IP address for the client network. You cannot specify an FQDN.

### vic-machine Option

`--client-network-ip`, no short name

You specify addresses as IPv4 addresses with a network mask.

```
--client-network-ip 192.168.2.10/24
```
You can also specify the address as a resolvable FQDN.

```
--client-network-ip=vch27-team-a.internal.domain.com
```

### Routing Destination and Gateway

The default route for the VCH endpoint VM is always on the public network. As a consequence, if you specify a static IP address on the client network and that network is not L2 adjacent to its gateway, you must specify the routing destination for that network as a comma-separated list of CIDRs. For example, setting a routing destination of `192.168.2.0/24,192.168.128.0/24` informs the VCH that it can reach all of the vSphere management endpoints that are in the ranges `192.168.2.0-255` and `192.168.128.0-192.168.128.255` by sending packets to the specified gateway.

Ensure that the address ranges that you specify include all of the systems that will connect to this VCH instance.

### Create VCH Wizard

If you set a static IP address on the client network, you can enter a comma-separated list of CIDRs and the IP address of the gateway in the **Routing destination:Gateway** text box.

For example, enter `192.168.2.0/24,192.168.128.0/24` for the routing destination and `192.168.2.1` for the gateway.

In the Create Virtual Host wizard in vSphere Integrated Containers 1.5.2 and later, specifying a routing destination and gateway is not required if the client network is L2 adjacent to its gateway. In previous releases, specifying a routing destination and gateway address is mandatory in the wizard, even if the client network is L2 adjacent to the gateway.

### vic-machine Option

Specify a gateway address as an IP address without a network mask in the **--client-network-gateway** option. If the client network is L2 adjacent to its gateway, you do not need to specify the gateway.

```
--client-network-gateway 192.168.2.1
```

You specify the routing destination or destinations in a comma-separated list in the **--client-network-gateway** option, with the address of the gateway separated from the routing destinations by a colon (`:`).

```
--client-network-gateway 192.168.2.0/24,192.168.128.0/24:192.168.2.1
```

This example informs the VCH that it can reach all of the client network endpoints that are in the ranges `192.168.2.0-255` and `192.168.128.0-192.168.128.255` by sending packets to the gateway at `192.168.2.1`.

### What to Do Next
If you are using the Create Virtual Container Host wizard, the bridge network and the public network are the only networks that it is mandatory to configure.

- To configure further advanced network settings, remain on the Configure Networks page, and see the following topics:
  - Configure the Management Network
  - Configure VCHs to Use Proxy Servers
  - Configure Container Networks
- If you have finished configuring the network settings, click **Next** to configure **VCH Security** settings.

**Example **vic-machine Command

This example **vic-machine create** command deploys a VCH with the following networking configuration:

- Directs public traffic to a network named **vic-public** and Docker API traffic to **vic-client**.
- Sets two DNS servers for use by the public, management, and client networks.
- Sets a static IP address for the VCH endpoint VM on each of the public and client networks.
- Specifies the gateway for the public network.
- Does not specify a gateway for the client network. It is not necessary to specify a gateway on either of the client or management networks if those networks are L2 adjacent to their gateways.
- Because this example specifies a static IP address for the VCH endpoint VM on the client network, **vic-machine create** uses this address as the Common Name with which to create auto-generated trusted certificates. Full TLS authentication is implemented by default, so no TLS options are specified.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --compute-resource cluster1
 --image-store datastore1
 --bridge-network vch1-bridge
 --public-network vic-public
 --public-network-ip 192.168.1.10/24
 --public-network-gateway 192.168.1.1
 --client-network vic-client
 --client-network-ip 192.168.2.10/24
 --dns-server 192.168.10.10
 --dns-server 192.168.10.11
 --thumbprint certificate_thumbprint
 --name vch1
```
Configure the Management Network

The management network is the network on which the VCH endpoint VM connects to vCenter Server and ESXi hosts. By designating a specific management network, you isolate connections to vSphere resources from the public network. The VCH uses this network to provide the `attach` function of the Docker API.

**IMPORTANT**: For information about VCH networking requirements, see Networking Requirements for VCH Deployment.

Options

The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container Host wizard, and to the corresponding `vic-machine create` options.

Management Network

An existing port group or logical switch that the VCH uses to communicate with vCenter Server and ESXi hosts. Container VMs use this network to communicate with the VCH.

**IMPORTANT:**

- If you use a dedicated network for the management network, the port group or logical switch must exist before you create the VCH.
- Because the management network provides access to your vSphere environment, and because container VMs use this network to communicate with the VCH, always use a secure network for the management network.
- Container VMs communicate with the VCH endpoint VM over the management network when an interactive shell is required. While the communication is encrypted, the public keys are not validated, which leaves scope for man-in-the-middle attacks. This connection is only used when the interactive console is enabled (`stdin / out / err`), and not for any other purpose.
- Ideally, use separate networks for the management network and container networks.
- You can use the same network as the management network for multiple VCHs.
- The most secure setup is to make sure that VCHs can access vCenter Server and ESXi hosts directly over the management network, and that the management network has route entries for the subnets that contain both the target vCenter Server and the corresponding ESXi hosts. If the management network does not have route entries for the vCenter Server and ESXi host subnets, you must configure asymmetric routing. For more information about asymmetric routing, see Asymmetric Routes.

When you create a VCH, `vic-machine create` checks that the firewall on ESXi hosts allows connections to port 2377 from the management network of the VCH. If access to port 2377 on ESXi hosts is subject to IP address restrictions, and if those restrictions block access to the management network, `vic-machine create` fails with a firewall configuration error:

```
Firewall configuration incorrect due to allowed IP restrictions on hosts:
"/ha-datacenter/host/localhost.localdomain/localhost.localdomain"
```
Firewall must permit dst 2377/tcp outbound to the VCH management interface

For information about how to open port 2377, see Open the Required Ports on ESXi Hosts.

**NOTE:** If the management network uses DHCP, `vic-machine` checks the firewall status of the management network before the VCH receives an IP address. It is therefore not possible to fully assess whether the firewall permits the IP address of the VCH. In this case, `vic-machine create` issues a warning.

Unable to fully verify firewall configuration due to DHCP use on management network
VCH management interface IP assigned by DHCP must be permitted by allowed IP settings
Firewall allowed IP configuration may prevent required connection on hosts:
"/ha-datacenter/host/localhost.localdomain/localhost.localdomain"
Firewall must permit dst 2377/tcp outbound to the VCH management interface

If you do not specify a management network, the VCH uses the public network for management traffic.

### Create VCH Wizard

1. Expand the **Advanced** view.
2. Select an existing port group or logical switch from the **Management network** drop-down menu.

### `vic-machine` Option

`--management-network, --mn`

You designate a specific network for traffic between the VCH and vSphere resources by specifying an existing port group or logical switch in the `vic-machine create --management-network` option when you deploy the VCH. If you specify an invalid port group or logical switch name, `vic-machine create` fails and suggests valid port groups or logical switches.

`--management-network port_group_or_logical_switch_name`

### Static IP Address

By default, vSphere Integrated Containers Engine uses DHCP to obtain an IP address for the VCH endpoint VM on the management network. You can optionally configure a static IP address for the VCH endpoint VM on the management network.

- You can only specify one static IP address on a given interface. If the management network shares a network with the public network, you can only specify a static IP address on the public network. All of the networks that share that network use the IP address that you specify for the public network.
- If you set a static IP address for the VCH endpoint VM on the public network, you must specify the gateway address for the public network. If the management network is L2 adjacent to its gateway, you do not need to specify the corresponding gateway for the management network.
- If the client and management networks both use the same network, and the public network does not use that network, you can set a static IP address for the endpoint VM on either or both of the client and management...
You specify the address as an IPv4 address with a network mask.

**Create VCH Wizard**

1. Select the **Static IP** radio button.
2. Enter an IP address with a network mask in the **IP Address** text box, for example `192.168.3.10/24`.

The Create Virtual Container Host wizard only accepts an IP address for the management network. You cannot specify an FQDN.

**vic-machine Option**

```
--management-network-ip, no short name
```

You can specify addresses as IPv4 addresses with a network mask.

```
--management-network-ip 192.168.3.10/24
```

You can also specify addresses as resolvable FQDNs.

```
--management-network-ip=vch27-team-b.internal.domain.com
```

**Routing Destination and Gateway**

The default route for the VCH endpoint VM is always on the public network. As a consequence, if you specify a static IP address on the management network and that network is not L2 adjacent to its gateway, you must specify the routing destination for that network. You specify a routing destination as a comma-separated list of CIDRs.

For example, setting a routing destination of `192.168.3.0/24,192.168.128.0/24` informs the VCH that it can reach all of the vSphere management endpoints that are in the ranges 192.168.3.0-255 and 192.168.128.0-192.168.128.255 by sending packets to the specified gateway.

Ensure that the address ranges that you specify include all of the systems that will connect to this VCH instance.

Specify the gateway to use if you specify a static IP address for the VCH endpoint VM on the management network. You specify gateway addresses as IP addresses without a network mask.

When you provide a gateway for the management network, it is mandatory to provide at least one routing destination.

**Create VCH Wizard**

If you set a static IP address and gateway on the management network, enter a comma-separated list of CIDRs and the IP address of the gateway in the **Routing destination:Gateway** text box.

For example, enter `192.168.3.0/24,192.168.128.0/24` for the **Routing destination** and `192.168.3.1` for **Gateway**.

**vic-machine Option**
Specify a gateway address as an IP address without a network mask. If the client network is L2 adjacent to its gateway, you do not need to specify the gateway.

```bash
--management-network-gateway 192.168.3.1
```

You specify the routing destination or destinations in a comma-separated list in the `--management-network-gateway` option, with the address of the gateway separated from the routing destinations by a colon (`:`).

```bash
--management-network-gateway routing_destination_1, routing_destination_2:gateway_address
```

This example informs the VCH that it can reach all of the vSphere management endpoints that are in the ranges 192.168.3.0-255 and 192.168.128.0-192.168.128.255 by sending packets to the gateway at 192.168.3.1.

```bash
--management-network-gateway 192.168.3.0/24,192.168.128.0/24:192.168.3.1
```

**Asymmetric Routes**

You can route incoming connections from ESXi hosts to VCHs over the public network rather than over the management network by configuring asymmetric routes.

This option allows containers on bridge networks to indirectly access assets on the management or client networks via the public network, if those assets are routable from the public network. If the management network does not have route entries for the vCenter Server and ESXi host subnets, and you do not set `--asymmetric-routes`, containers that run without specifying `-d` remain in the starting state.

In this scenario, use the `--asymmetric-routes` option to allow management traffic from ESXi hosts to the VCH to pass over the public network. By setting the `--asymmetric-routes` option, you set reverse path forwarding in the VCH endpoint VM to loose mode rather than the default strict mode. For information about reverse path forwarding and loose mode, see [https://en.wikipedia.org/wiki/Reverse_path_forwarding](https://en.wikipedia.org/wiki/Reverse_path_forwarding).

**Create VCH Wizard**

You cannot configure asymmetric routes in the Create Virtual Container Host wizard.

**vic-machine Option**

```bash
--asymmetric-routes, --ar
```

The `--asymmetric-routes` option takes no arguments. If you do not set `--asymmetric-routes`, all management traffic is routed over the management network.
What to Do Next

If you are using the Create Virtual Container Host wizard, the bridge network and the public network are the only networks that it is mandatory to configure.

- To configure further advanced network settings, remain on the Configure Networks page, and see the following topics:
  - Configure the Client Network
  - Configure VCHs to Use Proxy Servers
  - Configure Container Networks
- If you have finished configuring the network settings, click Next to configure VCH Security settings.

Example **vic-machine** Command

This example **vic-machine create** command deploys a VCH with the following configuration:

- Directs public, client, and management traffic to the networks **vic-public**, **vic-client**, and **vic-management** respectively.
- Sets two DNS servers for use by the public, management, and client networks.
- Sets a static IP address and subnet mask for the VCH endpoint VM on the public, client, and management networks.
- Specifies the gateway for the public network.
- Specifies a gateway and routing destinations for the client and management networks.
- Because this example specifies a static IP address for the VCH endpoint VM on the client network, **vic-machine** create uses this address as the Common Name with which to create auto-generated trusted certificates. Full TLS authentication is implemented by default, so no TLS options are specified.
- Specifies **--asymmetric-routes** to allow incoming connections from ESXi hosts to VCHs over the public network rather than over the management network.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--public-network-ip 192.168.1.10/24
--public-network-gateway 192.168.1.1
--client-network vic-client
--client-network-ip 192.168.2.10/24
--client-network-gateway 192.168.2.0/24,192.168.128.0/24:192.168.2.1
--management-network vic-management
--management-network-ip 192.168.3.10/24
--management-network-gateway 192.168.3.0/24,192.168.128.0/24:192.168.3.1
--dns-server 192.168.10.10
--dns-server 192.168.10.11
```
--thumbprint certificate_thumbprint
--name vch1
--asymmetric-routes
Configure VCHs to Use Proxy Servers

If access to the Internet or to your private image registries requires the use of a proxy server, you must configure a
virtual container host (VCH) to connect to the proxy server when you deploy it. The proxy is used only when using
docker login to log in to secure registries and when using docker pull to pull images, and not for any other purpose.

**IMPORTANT:** Configuring a VCH to use a proxy server does not configure proxy support on the containers that this
VCH runs. Container developers must configure proxy servers on containers when they create them.

You can add, reconfigure, or remove proxy servers after you have deployed a VCH by using the vic-machine configure
--https-proxy and --http-proxy options. For information about adding, reconfiguring, or removing proxy servers, see
Add, Configure, or Remove Proxy Servers in Configure Running Virtual Container Hosts.

Options

The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container
Host wizard, and to the corresponding vic-machine create options.

**HTTP Proxy**

The address of the HTTP proxy server through which the VCH accesses image registries when using HTTP.

**Create VCH Wizard**

Enter the IP address or FQDN of an HTTP proxy in the HTTP proxy text box, for example 192.168.3.1. Optionally
add a port number in the Port text box.

**vic-machine Option**

`--http-proxy`, no short name

Specify the address of the proxy server in the `--http-proxy` option, as either an FQDN or an IP address.

`--http-proxy http://proxy.example.mycompany.org:80`

**HTTPS Proxy**

The address of the HTTPS proxy server through which the VCH accesses image registries when using HTTPS.

**Create VCH Wizard**

Enter the IP address or FQDN of an HTTPS proxy in the HTTPS proxy text box, for example 192.168.3.1. Optionally
add a port number in the Port text box.
vic-machine Option

--https-proxy, no short name

Specify the address of the proxy server in the --https-proxy option, as either an FQDN or an IP address.

--https-proxy https://proxy.example.mycompany.org:443

No Proxy

If you configure proxies, you can provide a list of URLs to exclude from proxying.

Create VCH Wizard

This option is not available in the Create Virtual Container Host wizard.

vic-machine Option

--no-proxy, no short name

Specify any URLs to exclude from proxying in the --no-proxy option, as a comma-separated list of host names, domain names, or a mixture of both.

--no-proxy localhost,.example.com

What to Do Next

If you are using the Create Virtual Container Host wizard, the bridge network and the public network are the only networks that it is mandatory to configure.

- To configure further advanced network settings, remain on the Configure Networks page, and see the following topics:
  - Configure the Client Network
  - Configure the Management Network
  - Configure Container Networks
- If you have finished configuring the network settings, click Next to configure VCH Security settings.

Example vic-machine Command

This example vic-machine create command deploys a VCH that accesses the network via an HTTPS proxy server and excludes the local host from proxying.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
```
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--https-proxy https://proxy.example.mycompany.org:443
--no-proxy localhost
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
Configure Container Networks

Container networks are vSphere networks that the vSphere administrator makes directly available to container VMs. When you deploy a virtual container host (VCH), you provide a mapping of the vSphere network name to an alias that the VCH endpoint VM uses. You can share one network alias between multiple containers.

The mapped networks are available for use by the Docker API. Running `docker network ls` lists the container networks, and container developers can attach them to containers in the normal way by using commands such as `docker run` or `create` with the `--network=mapped-network-name` option, or `docker network connect`.

**IMPORTANT:**
- For information about VCH networking requirements, see Networking Requirements for VCH Deployment.
- If you use NSX-T Data Center logical switches, you might need a T1 router, for example to bridge overlay and underlay networks.

Advantages of Container Networks

By using container networks, you can connect container VMs to any specific distributed port group or logical switch, which gives the container VMs their own dedicated connection to the network. Container networks allow containerized applications to get their own routable IP address and become first class citizens of your datacenter.

Using container networks provides you with the following advantages:

- **No single point of failure**: Every container VM has its own dedicated network connection, so even if the VCH endpoint VM fails there is no outage for your applications. If containers use port mapping, the containers are accessible over a network via a port on the VCH endpoint VM. If the endpoint VM goes down for any reason, that network connection is no longer available. If you use container networks, containers have their own identity on the container network. Consequently, the network and the container have no dependency on the VCH endpoint VM for execution.

- **Network bandwidth sharing**: Every container VM gets its own network interface and all of the bandwidth it can provide is available to the application. Traffic does not route through the VCH endpoint VM via network address translation (NAT) and containers do not share the public IP of the VCH.

- **No NAT conflicts**: There is no need for port mapping because every container VM gets its own IP address. Container services are directly exposed on the network without NAT, so applications that once could not run on containers can now run by using vSphere Integrated Containers.

- **No port conflicts**: Since every container VM gets its own IP address, you can have multiple application containers that require an exclusive port running on the same VCH.

**NOTE:** You can add or reconfigure container networks after you have deployed a VCH by using the `vic-machine configure --container-network` options. For information about adding or reconfiguring container networks, see Configure Container Network Settings in Configure Running Virtual Container Hosts.

Options
The sections in this topic each correspond to an entry in the Configure Networks page of the Create Virtual Container Host wizard, and to the corresponding `vic-machine create` options.

**Container Network**

A port group or logical switch for container VMs to use for external communication when container developers run `docker run` or `docker create` with the `--net` option.

**IMPORTANT**: For security reasons, whenever possible, use separate networks for the container network and the management network.

To specify a container network, you provide the name of a port group or logical switch for the container VMs to use, and an optional descriptive name for the container network for use by Docker. If you do not specify a descriptive name, Docker uses the vSphere network name.

- The port group or logical switch must exist before you create the VCH. For information about how to create a port group or logical switch, see Networking Requirements for VCH Deployment.
- Isolate the mapped container networks by using a separate VLAN for each network.
- You cannot use the same network as you use for the bridge network.
- If the port group or logical switch that you specify does not support DHCP, you must configure an IP Address Range for the containers to use.
- The descriptive name that you provide appears under Networks when you run `docker info` or `docker network ls` on the deployed VCH. The descriptive name cannot include spaces. The descriptive name is optional unless the network name contains spaces. If the network name contains spaces, you must specify a descriptive name.
- Container developers use the descriptive name in the `--net` option when they run `docker run` or `docker create`.
- If you use shared NFS share points as volumes stores, it is recommended to make the NFS target accessible from the container network. If you use NFS volume stores and you do not specify a container network, containers use NAT to route traffic to the NFS target through the VCH endpoint VM. This can create potential bottlenecks and a single point of failure.

You can specify multiple container networks to add multiple vSphere networks to Docker.

If you do not specify container networks, or if you deploy containers that do not use a container network, the containers' network services are still be available via port mapping through the VCH, by using NAT through the public network of the VCH.

**Create VCH Wizard**

1. Expand the Advanced view.
2. Select an existing port group or logical switch from the Container network drop-down menu.
3. In the Label text box, enter a descriptive name for use by Docker.

**vic-machine Option**

```
--container-network --cn
```

You use the `vic-machine create --container-network` option to specify an existing port group or logical switch for the container network, and a descriptive name for the network for use by Docker.
--container-network port_group_or_logical_switch_name:descriptive_name

You can specify --container-network times to add multiple vSphere networks to Docker. If you specify an invalid port group or logical switch name, vic-machine create fails and suggests valid port groups or logical switches.

**IP Address Range**

The range of IP addresses that container VMs can use if the network that you specify as a container network does not support DHCP. If you specify an IP address range, VCHs manage the addresses for containers within that range.

- The range that you specify must not be used by other computers or VMs on the network.
- You must specify an IP address range if container developers need to deploy containers with static IP addresses.
- If you specify a gateway for a container network but do not specify an IP address range, the IP range for container VMs is the entire subnet that you specify in the gateway.

**NOTE:**

If you use a network container that supports DHCP and the Docker run command to deploy the container, you must specify the DNS server for the container to get an IP address from DHCP server. If you do not specify a DNS server, the command times out with the following error:

```
docker: Error response from daemon: Server error from portlayer: unable to wait for process launch status
```

**Create VCH Wizard**

1. If the container network does not support DHCP, select the **IP Range** radio button.
2. Enter an IP address range or CIDR in the **IP Range** text box.
   - Example IP address range: 192.168.100.2-192.168.100.254
   - Example CIDR: 192.168.100.0/24

**vic-machine Option**

--container-network-ip-range , --cnr

When you specify the container network IP range, you use the network that you specify in the **--container-network** option and specify either an IP address range or a CIDR:

```
--container-network-ip-range port_group_or_logical_switch_name:192.168.100.2-192.168.100.254

--container-network-ip-range port_group_or_logical_switch_name:192.168.100.0/24
```

If you specify --container-network-ip-range but you do not specify --container-network, or if you specify a different network to the one that you specify in --container-network, vic-machine create fails with an error.

**Gateway**
If the network that you specify as a container network does not support DHCP, you must specify a gateway for the subnet of the container network.

**Create VCH Wizard**

Enter an IP address with a network mask in the Gateway text box, for example `192.168.100.10/24`.

**vic-machine Option**

```
--container-network-gateway, --cng
```

Specify the IP address and network mask for the gateway in the `--container-network-gateway` option. When you specify the container network gateway, you must use the network that you specify in the `--container-network` option.

```
--container-network-gateway port_group_or_logical_switch_name:192.168.100.1/24
```

If you specify `--container-network-gateway` but you do not specify `--container-network`, or if you specify a different network to the one that you specify in `--container-network`, `vic-machine create` fails with an error.

**DNS**

If you specify an IP address range and gateway for a container network, it is recommended that you also specify one or more DNS servers.

**Create VCH Wizard**

Enter a comma-separated list of DNS server addresses in the DNS server text box, for example `192.168.100.10,192.168.100.11`.

**vic-machine Option**

```
--container-network-dns, --cnd
```

You specify the container network DNS server in the `--container-network-dns` option. You must use the network that you specify in the `--container-network` option.

```
--container-network-dns port_group_or_logical_switch_name:8.8.8.8
```

You can specify `--container-network-dns` multiple times, to configure multiple DNS servers. If you specify `--container-network-dns` but you do not specify `--container-network`, or if you specify a different network to the one that you specify in `--container-network`, `vic-machine create` fails with an error.

**Firewall Policy**
You can configure the trust level of container networks. The following table describes the levels of trust that you can set.

<table>
<thead>
<tr>
<th>Trust Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed</td>
<td>No traffic can come in or out of the container network, even if developers expose ports on containers.</td>
</tr>
<tr>
<td>outbound</td>
<td>Only outbound connections are permitted. Use this setting if the VCH will host applications that consume but do not provide services.</td>
</tr>
<tr>
<td>peers</td>
<td>Only connections to other containers with the same peers network are permitted. To enforce the peers trust level, you must set the --container-network-ip-range on the container network. The VCH applies a network rule so that container traffic is only allowed over that IP range. If you do not specify an IP range, the container network uses DHCP and there is no way that the VCH can determine whether or not a container at a given IP address is a peer to another container. In this case, the VCH defaults to the open setting, and it treats all connections as peer connections. Use the peers setting for container VMs that need to communicate with each other but not with the external world.</td>
</tr>
<tr>
<td>published</td>
<td>Only connections to published ports is permitted.</td>
</tr>
<tr>
<td>open</td>
<td>All traffic is permitted and developers can decide which ports to expose.</td>
</tr>
</tbody>
</table>

If you do not set a trust level, the default level of trust is published. As a consequence, if you do not set a trust level, container developers must explicitly specify -p 80 in docker run and docker create commands to publish port 80 on a container. Obliging developers to specify the ports to expose improves security and gives you more awareness of your environment and applications. To open ports on container networks when using the published firewall policy, use the expose option with Docker compose.

You can use vic-machine configure --container-network-firewall to change the trust level after deployment of the VCH. For information about configuring container network firewalls, see Configure Container Network Settings in Configure Running Virtual Container Hosts.

**Create VCH Wizard**

Leave the default policy of Published, or use the Firewall policy drop-down menu to select Closed, Outbound, Peers, or Open.

**vic-machine Option**

--container-network-firewall, --cnf

You specify the trust level in the --container-network-firewall option. You must use the port group that you specify in the --container-network option.

--container-network-firewall port_group_or_logical_switch_name:trust_level

**What to Do Next**
If you are using the Create Virtual Container Host wizard, the bridge network and the public network are the only networks that it is mandatory to configure.

- Optionally click the + button to add more container networks to the VCH, and repeat the procedures for each additional container network.
- To configure further advanced network settings, remain on the Configure Networks page, and see the following topics:
  - Configure the Client Network
  - Configure the Management Network
  - Configure VCHs to Use Proxy Servers
- If you have finished configuring the network settings, click Next to configure VCH Security settings.

**Example vic-machine Command**

This example `vic-machine create` command deploys a VCH with the following configuration:

- Designates a network and static IP address for the VCH endpoint VM on the public, client, and management networks.
- Designates a network named `vic-containers` for use by container VMs.
- Gives the container network the name `vic-container-network`, for use by Docker.
- Specifies the gateway, two DNS servers, and a range of IP addresses on the container network for container VMs to use.
- Opens the firewall on the container network for outbound connections.

```bash
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--public-network-ip 192.168.1.10/24
--public-network-gateway 192.168.1.1
--client-network vic-client
--client-network-ip 192.168.2.10/24
--client-network-gateway 192.168.2.0/24,192.168.128.0/24:192.168.2.1
--management-network vic-management
--management-network-ip 192.168.3.10/24
--management-network-gateway 192.168.3.0/24,192.168.128.0/24:192.168.3.1
--dns-server 192.168.10.10
--dns-server 192.168.10.11
--container-network vic-containers:vic-container-network
--container-network-gateway vic-containers:192.168.100.1/24
--container-network-dns vic-containers:192.168.100.10
--container-network-dns vic-containers:192.168.100.11
--container-network-ip-range vic-containers:192.168.100.0/24
```
--container-network-firewall vic-containers:outbound
--thumbprint certificate_thumbprint
--name vch1
--asymmetric-routes
Virtual Container Host Security

Virtual container hosts (VCHs) authenticate connections from Docker API clients by using server and client TLS certificates. For information about how VCHs and Docker use certificates, see Virtual Container Host Certificate Requirements.

When you deploy a VCH, you can use all automatically generated certificates, all custom certificates, or a combination of both.

**NOTE:** The Create Virtual Container Host wizard in the vSphere Client does not support automatically generated CA or client certificates. To use automatically generated CA and client certificates, you must use the vic-machine CLI utility to deploy VCHs.

The following table provides a summary of the configurations that vSphere Integrated Containers Engine supports, and whether you can implement those configurations in the Create Virtual Container Host wizard in the vSphere Client.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Available in vSphere Client?</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-generated server certificate + auto-generated CA + auto-generated client certificate</td>
<td>No</td>
<td>Example</td>
</tr>
<tr>
<td>Auto-generated server certificate + custom CA</td>
<td>Yes</td>
<td>Example</td>
</tr>
<tr>
<td>Custom server certificate + custom CA</td>
<td>Yes</td>
<td>Example</td>
</tr>
<tr>
<td>Custom server certificate + auto-generated CA + auto-generated client certificate</td>
<td>No</td>
<td>Example</td>
</tr>
<tr>
<td>Auto-generated server certificate + no client verification</td>
<td>Yes</td>
<td>Example</td>
</tr>
<tr>
<td>Custom server certificate + no client verification</td>
<td>Yes</td>
<td>Example</td>
</tr>
<tr>
<td>No server or client certificate verification</td>
<td>No</td>
<td>Example</td>
</tr>
</tbody>
</table>

The following topics describe how to achieve all of the configurations listed in the table above, by using either the Create Virtual Container Host wizard or the vic-machine CLI, or both.

- Virtual Container Host Certificate Options
- Disable Client Verification

The Examples column in the table provides direct links to the relevant example in these topics.
Virtual Container Host Certificate Options

This topic describes the different certificate options that you use when deploying virtual container hosts (VCHs) that implement verification of client certificates. It provides examples of how to combine the options to achieve different configurations.

For information about how VCHs and Docker use certificates, see Virtual Container Host Certificate Requirements.

For information about how to deploy VCHs that do not verify connections from clients, see Disable Client Authentication.

Options

The following sections each correspond to an entry in the Security page of the Create Virtual Container Host wizard. Each section also includes a description of the corresponding vic-machine create option.

Certain options in this section are exposed in the vic-machine create help if you run vic-machine create --extended-help, or vic-machine create -x.

Client Certificates

You upload an existing Certificate Authority (CA) for vSphere Integrated Containers Engine to use to sign client certificates. If you use vic-machine, you can opt for vSphere Integrated Containers Engine to automatically generate a CA, or you can provide a custom CA. If you use the Create Virtual Container Host wizard, you must provide a custom CA.

Select CA Certificate PEM File

If you do not use an automatically generated CA, you must provide the public portion of a CA for the VCH to use to validate client certificates. The client certificates are used as credentials for access to the Docker API running in the VCH. This does not need to be the same CA as you use to sign the server certificate, if you use a custom CA to sign server certificates. You can specify multiple CAs if you use more than one CA to sign client certificates.

You must provide cert.pem and key.pem client certificate files that are signed by this CA to container developers, so that they can connect Docker clients to the VCH. vSphere Integrated Containers Management Portal administrators require these files when they add VCHs to projects in management portal.

- For information about how to connect Docker clients to VCHs, see Configure the Docker Client for Use with vSphere Integrated Containers.
- For information about how to add VCHs to management portal, see Add Container Hosts with Full TLS Authentication in vSphere Integrated Containers Management Portal Administration.
- For information about the requirements for client certificates, see the section on custom certificates in Virtual Container Host Certificate Requirements.
Create VCH Wizard

If you use the Create Virtual Container Host wizard and you do not disable client verification, it is mandatory to upload at least one custom CA file. The Create Virtual Container Host wizard does not support automatic generation of CA files.

1. Leave the **Client Certificates** switch in the green ON position, to enable verification of client certificates.
2. For **Select the X.509 certificate pem** file, click **Select** and navigate to an existing `ca.pem` file for the custom CA that you use to sign client certificates.
3. Optionally click **Select** again to upload additional CAs.

vic-machine Option

```
--tls-ca , --ca
```

Specify the path to an existing `ca.pem` file for the custom CA that you use to sign client certificates. Include the filename in the path. You can specify `--tls-ca` multiple times. If not specified, and if no CA exists in the certificate folder on the machine on which you run `vic-machine`, `vic-machine create` automatically generates a CA.

```
--tls-ca path_to_ca_file/ca.pem
```

Server Certificates

You can opt for vSphere Integrated Containers Engine to automatically generate server certificates, or you can upload existing custom certificates.

Common Name (CN)

The IP address, FQDN, or a domain wildcard, for the client system or systems that connect to this VCH. This option is only applicable if you are using an automatically generated server certificate.

**NOTE:** Specifying an FQDN or wildcard assumes that there is a DHCP server offering IP addresses on the client network, and that those addresses have corresponding DNS entries such as `dhcp-a-b-c.example.com`.

Create VCH Wizard

1. For **Source of certificates**, select the **Auto-generate** radio button.
2. In the **Common Name (CN)** text box, enter the IP address, FQDN, or a domain wildcard for the client systems that connect to this VCH.

vic-machine Option

```
--tls-cname , no short name
```

The IP address, FQDN, or a domain wildcard, for the client system or systems that connect to this VCH.

```
--tls-cname vch-name.example.org
```
If you specify `--tls-cname`, `vic-machine create` performs the following actions during the deployment of the VCH:

- On the system on which you run `vic-machine`, checks for an existing server certificate in either a folder that has the same name as the VCH that you are deploying, or in a location that you can optionally specify in the `--tls-cert-path` option. If a valid server certificate exists that includes the same Common Name attribute as the one that you specify in `--tls-cname`, `vic-machine create` reuses that certificate. Reusing certificates allows you to delete and recreate VCHs for which you have already distributed the client certificates to container developers.
- If certificates are present in the certificate folder that include a different Common Name attribute to the one that you specify in `--tls-cname`, `vic-machine create` fails.
- If a certificate folder does not exist, `vic-machine create` creates a folder with the same name as the VCH in the location from which you run `vic-machine`, or creates a folder in a location that you specify in the `--tls-cert-path` option.
- If valid certificates do not already exist, `vic-machine create` automatically creates a CA and uses that CA to sign and create a client certificate and to sign the server certificate. The CA and client certificate allow the server to confirm the identity of the client. The `vic-machine create` command creates the following CA, server, and client certificate/key pairs in the certificate folder:
  - `ca.pem`
  - `ca-key.pem`
  - `cert.pem`
  - `key.pem`
  - `server-cert.pem`
  - `server-key.pem`
- Creates a browser-friendly PFX client certificate, `cert.pfx`, to use to authenticate connections to the VCH Admin portal for the VCH.

**NOTE:** The folder and file permissions for the generated certificate and key are readable only by the user who created them.

Running `vic-machine create` with the `--tls-cname` option also creates an environment file named `vch_name.env`, that contains Docker environment variables that container developers can use to configure their Docker client environment. For information about how to connect Docker clients to VCHs, see [Configure the Docker Client for Use with vSphere Integrated Containers](#).

**NOTE:** If you do not specify `--tls-cname` but you do set a static address for the VCH on the client network interface, `vic-machine create` uses that address for the Common Name, with the same results as if you had specified `--tls-cname`. For information about setting a static IP address on the client network, see [Configure the Client Network](#).

### Organization (O)

A list of identifiers to record in automatically generated server certificates, to add basic descriptive information to the server certificate. This information is visible to clients if they inspect the server certificate.

### Create VCH Wizard

---

---
1. For Source of certificates, select the Auto-generate radio button.
2. In the Organization (O) text box, leave the default setting of the VCH name, or enter a different organization identifier.

**vic-machine Option**

`--organization`, no short name

If you specify `--tls-cname`, you can optionally specify `--organization`. If not specified, `vic-machine create` uses the name of the VCH as the `organization` value.

**NOTE**: If you specify a static IP address on the client network, the `client-ip-address` is used for `CommonName` but not for `Organization`.

`--organization my_organization_name`

**Certificate Key Size**

The size of the key for vSphere Integrated Containers Engine to use when it creates auto-generated certificates. It is not recommended to use key sizes of less than the default of 2048 bits.

**Create VCH Wizard**

1. For Source of certificates, select the Auto-generate radio button.
2. In the Certificate key size text box, leave the default setting of 2048 bits, or enter a higher value.

**vic-machine Option**

`--certificate-key-size`, `--ksz`

If you specify `--tls-cname`, you can optionally specify `--certificate-key-size`. If not specified, `vic-machine create` creates keys with default size of 2048 bits.

`--certificate-key-size 3072`

**Certificate Path**

If you are using the Create Virtual Container Host wizard, the certificate path setting is not applicable.

**vic-machine Option**

`--tls-cert-path`, none

By default `--tls-cert-path` is a folder in the current directory on the system on which you are running `vic-machine`. The certificate folder takes its name from the VCH name that you specify in the `--name` option. If specified, `vic-machine create` checks in the `--tls-cert-path` folder for existing certificates with the standard names and uses those certificates if they are present:
server-cert.pem
server-key.pem
ca.pem

If `vic-machine create` does not find existing certificates with the standard names in the folder you specify in `--tls-cert-path`, or if you do not specify certificates directly by using the `--tls-server-cert`, `--tls-server-key`, and `--tls-ca` options, `vic-machine create` automatically generates certificates. Automatically generated certificates are saved in the `--tls-cert-path` folder with the standard names. `vic-machine create` additionally generates other certificates:

- cert.pem and key.pem for client certificates, if required.
- ca-key.pem, the private key for the certificate authority.

If the folder that you specify in `--tls-cert-path` does not exist, `vic-machine create` creates it.

`--tls-cert-path 'path_to_certificate_folder'`

### Server Certificate

A custom X.509 server certificate for the VCH if you do not select the options to automatically generate a server certificate. The server certificate identifies the VCH endpoint VM both to Docker clients and to browsers that connect to the VCH Admin portal. For information about the requirements for server certificates, see the section on custom certificates in Virtual Container Host Certificate Requirements.

### Create VCH Wizard

1. For **Source of certificates**, select the **Existing** radio button.
2. For **Server certificate**, click **Select** and navigate to an existing server-cert.pem file.

### vic-machine Option

`--tls-server-cert`, no short name

This option is mandatory if you use custom server certificates, rather than auto-generated certificates. If you do not use an automatically generated server certificate, use this option in combination with the `--tls-server-key` option, that provides the path to the private key file for the custom server certificate. Include the name of the certificate file in the path.

If you provide a custom server certificate by using the `--tls-server-cert` option, you can use `--tls-cname` as a sanity check to ensure that the certificate is valid for the deployment.

`--tls-server-cert path_to_certificate_file/certificate_file_name.pem`

### Server Private Key

The private key file to use with a custom server certificate. This option is mandatory if you specify a custom X.509 server certificate. Include the name of the key file in the path.
IMPORTANT: The key must not be encrypted.

Create VCH Wizard

1. For Source of certificates, select the Existing radio button.
2. For Server private key, click Select and navigate to an existing server-key.pem file.

vic-machine Option

--tls-server-key, no short name

Use this option in combination with the --tls-server-cert option. Include the name of the key file in the path.

```
--tls-server-key path_to_key_file/key_file_name.pem
```

How to Connect to VCHs with Client Verification

After deployment, the Docker API for VCHs that implement client verification is accessible at https://vch_dnsname.example.org:2376.

You must provide the cert.pem, key.pem, and ca.pem files to all container developers who need to connect Docker clients to the VCH.

- If you deploy VCHs by using the Create Virtual Container Host wizard, you must create the cert.pem and key.pem files manually, using the custom ca.pem file to sign them.
- If you deploy VCHs by using vic-machine, you can either use the auto-generated client certificate, or use a client certificate that you create and sign manually.

If vSphere Integrated Containers Management Portal administrators or DevOps administrators intend to add the VCH to a project in vSphere Integrated Containers Management Portal, they also require the cert.pem, key.pem, and ca.pem files.

Examples

This section provides examples of the combinations of options to use in the Security page of the Create Virtual Container Host wizard and in vic-machine create, for the different security configurations that you can implement when using automatically generated and custom certificates.

- Automatically Generate Server, Client, and CA Certificates
- Automatically Generate Server Certificates and Use Custom CA and Client Certificates
- Use Custom Server and Client Certificates and a Custom CA
- Use a Custom Server Certificate and Automatically Generate a CA and Client Certificate

Automatically Generate Server, Client, and CA Certificates
This example deploys a VCH with the following security configuration:

- Uses an automatically generated server certificate
- Implements client authentication with an automatically generated client certificate
- Uses an automatically generated CA to sign the client and server certificates

Create VCH Wizard

The Create Virtual Container Host wizard does not support automatic generation of CAs and client certificates.

vic-machine Command

This example \texttt{vic-machine create} command deploys a VCH with the following configuration:

- Provides a wildcard domain, (*.example.org), for the client systems that will connect to this VCH, for use as the Common Name in the server certificate. This assumes that there is a DHCP server offering IP addresses on the public network, and that those addresses have corresponding DNS entries such as dhcp-a-b-c.example.com.
- Specifies an empty folder in which to save the auto-generated certificates.
- Sets the certificate's organization (O) field to My Organization.
- Generates a certificate with a key size of 3072 bits.

\begin{verbatim}
vic-machine-operating_system create
--target 'Administrator@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--tls-cname *.example.org
--tls-cert-path path_to_cert_folder
--organization 'My Organization'
--certificate-key-size 3072
--thumbprint certificate_thumbprint
--name vch1
\end{verbatim}

Result

When you run this command, \texttt{vic-machine create} performs the following operations:

- Checks for existing certificates in the folder that you specified in \texttt{--tls-cert-path}.
- No existing server-cert.pem, server-key.pem, or ca.pem certificates are present in the folder, so \texttt{vic-machine} automatically generates them and saves them in the certificate folder.
- Automatically generates a client certificate and saves it in the certificate folder.
- Uses the automatically generated CA to sign the server and client certificates.
- Automatically generates a \texttt{.pfx} certificate to allow access to the VCH Admin portal for this VCH.
- Generates an \texttt{env} file that includes the environment variables with which to configure Docker clients that connect to this VCH.
Automatically Generate Server Certificates and Use a Custom CA for Client Certificates

This section provides examples of using both the Create Virtual Container Host wizard and `vic-machine create` to deploy a VCH with the following security configuration:

- Uses an automatically generated server certificate.
- Uploads the CA certificate for a custom CA that you use to sign custom client certificates.
- Implements client authentication with a custom client certificate.

Prerequisites

- Create or obtain the `ca.pem` file for the CA that you use to sign client certificates.
- Use the custom CA to create and sign client certificates.

Create VCH Wizard

1. Leave the **Client Certificates** switch in the green ON position, to enable verification of client certificates.
2. Click **Select** and navigate to an existing `ca.pem` file for the custom CA that you use to sign client certificates.
3. Optionally click **Select** again to upload additional CAs.
4. Under Server Certificates, select the **Auto-generate** radio button.
5. In the **Common Name (CN)** text box, enter the IP address, FQDN, or a domain wildcard for the client systems that connect to this VCH.
6. In the **Organization (O)** text box, leave the default setting of the VCH name, or enter a different organization identifier.
7. In the **Certificate key size** text box, leave the default setting of 2048 bits, or enter a higher value.

**vic-machine** Command

This example `vic-machine create` command deploys a VCH with the following configuration:

- Provides a wildcard domain `*.example.org` as the FQDN for the client systems that connect to the VCH, for use as the Common Name in the automatically generated server certificate. This assumes that there is a DHCP server offering IP addresses on the public network, and that those addresses have corresponding DNS entries such as `dhcp-a-b-c.example.com`.
- Specifies the folder in which to save auto-generated certificates in the `--tls-cert-path` option.
- Sets the certificate’s `organization (O)` field to `My Organization`.
- Generates certificates with a key size of 3072 bits.
- Provides the path to an existing `ca.pem` file for the CA that you use to sign client certificates.

```bash
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
```
--tls-cname *.example.org
--tls-cert-path path_to_cert_folder
--organization 'My Organization'
--certificate-key-size 3072
--tls-ca path_to_folder/ca.pem
--thumbprint certificate_thumbprint
--name vch1

Result

When you run this command, `vic-machine create` performs the following operations:

- Checks for existing certificates in the folder that you specified in `--tls-cert-path`.
- Since no existing `server-cert.pem` or `server-key.pem` certificates are present in the folder, `vic-machine` automatically generates them.
- Automatically generates a client certificate, signs it with the custom CA, and saves it in the certificate folder. However, you can use any client certificate that is signed by the CA that you provided to the VCH.

You must provide the custom `cert.pem`, `key.pem`, and `ca.pem` files to all container developers who need to connect Docker clients to this VCH.

Note: You must specify the `--tls-cname` option because you are generating the certificate automatically, signing it with the custom CA, and there is no static IP defined for the client network. If there were a static client IP defined, then you would not need to specify the `--tls-cname` option.

Use a Custom Server Certificate and a Custom CA for Client Certificates

This example deploys a VCH with the following security configuration:

- Uses a custom server certificate.
- Implements client authentication with a custom client certificate.
- Uses a custom CA.

Prerequisite

Create or obtain server and client certificates, that you sign by using a custom CA.

Create VCH Wizard

1. Leave the Client Certificates switch in the green ON position, to enable verification of client certificates.
2. Click Select and navigate to an existing `ca.pem` file for the custom CA that you use to sign client certificates.
3. Optionally click Select again to upload additional CAs.
4. Under Server Certificates, select the Existing radio button.
5. For Server certificate, click Select and navigate to an existing `server-cert.pem` file.
6. For Server private key, click Select and navigate to an existing `server-key.pem` file.
**vic-machine Command**

This example `vic-machine create` command provides the paths relative to the current location of the `.pem` files for the custom server certificate and key files, and a custom CA.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--tls-server-cert path_to_folder/certificate_file.pem
--tls-server-key path_to_folder/key_file.pem
--tls-ca path_to_folder/ca.pem
--name vch1
--thumbprint certificate_thumbprint
```

**Result**

When you run this command, `vic-machine create` performs the following operations:

- Uploads the custom server certificate and key to the VCH.
- Uploads the CA to the VCH, to verify client certificates that have been signed by that CA.

You must provide the custom `cert.pem`, `key.pem`, and `ca.pem` files to all container developers who need to connect Docker clients to this VCH.

**Use a Custom Server Certificate and Automatically Generate a CA and Client Certificate**

Specifying the `--tls-server-cert` and `--tls-server-key` options for the server certificate does not affect the automatic generation of client certificates. If you specify the `--tls-cname` option to match the common name value of the server certificate, `vic-machine create` generates self-signed certificates for Docker client authentication and deployment of the VCH succeeds.

**Prerequisite**

Create or obtain a custom server certificate, that you sign by using a custom CA.

**Create VCH Wizard**

The Create Virtual Container Host wizard does not support automatic generation of CAs and client certificates.
This example `vic-machine create` command deploys a VCH with the following configuration:

- Provides the paths relative to the current location of the *.pem files for the custom server certificate and key files.
- Specifies the common name from the server certificate in the `--tls-cname` option. The `--tls-cname` option is used in this case to ensure that the auto-generated client certificate is valid for the resulting VCH, given the network configuration.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --compute-resource cluster1
 --image-store datastore1
 --bridge-network vch1-bridge
 --public-network vic-public
 --tls-server-cert ../some/relative/path/certificate_file.pem
 --tls-server-key ../some/relative/path/key_file.pem
 --tls-cname cname_from_server_cert
 --name vch1
 --thumbprint certificate_thumbprint
```

**Result**

When you run this command, `vic-machine create` performs the following operations:

- Uploads the `server-cert.pem` or `server-key.pem` to the VCH.
- Automatically generates a CA.
- Uses the CA to create and sign a client certificate.

After deployment, the Docker API for this VCH is accessible at [https://dhcp-a-b-c.example.org:2376](https://dhcp-a-b-c.example.org:2376).

You must provide the automatically generated `cert.pem`, `key.pem`, and `ca.pem` file to all container developers who need to connect Docker clients to this VCH.

**Troubleshooting**

If you see certificate errors during deployment, see the following troubleshooting topics:

- VCH Deployment Fails with a Certificate Verification Error
- VCH Deployment Fails with Missing Common Name Error Even When TLS Options Are Specified Correctly
- VCH Deployment Fails with Certificate cname Mismatch

**What to Do Next**

If you are using the Create Virtual Container Host wizard, click **Next** to Configure Registry Access.
Disable Client Verification

To deploy a virtual container host (VCH) that does not restrict access to the Docker API but still encrypts communication between clients and the VCH, you can disable client certificate verification. If you use `vic-machine` to deploy VCHs, you can also completely disable TLS authentication and encryption on both the client and server sides.

Options

The following sections each correspond to an entry in the Security page of the Create Virtual Container Host wizard. Each section also includes a description of the corresponding `vic-machine create` option.

Certain options in this section are exposed in the `vic-machine create` help if you run `vic-machine create --extended-help`, or `vic-machine create -x`.

Disable Client Certificate Verification

Disabling client certificate verification prevents the use of CAs for client authentication. VCHs still require a server certificate if you disable client authentication. You can either supply a custom server certificate or have vSphere Integrated Containers Engine automatically generate one. If you disable client authentication, there is no access control to the VCH from Docker clients, but connections remain encrypted.

If you disable client certificate verification, container developers run Docker commands against the VCH with the `--tls` option. The `DOCKER_TLS_VERIFY` environment variable must not be set. Note that setting `DOCKER_TLS_VERIFY` to 0 or `false` has no effect. For more information about how to connect Docker clients to VCHs, see Configure the Docker Client for Use with vSphere Integrated Containers.

For example, you can access information about a VCH that uses a server certificate but does not perform client verification by running the following command in the Docker client:

```
docker -H vch_dnsname.example.org.example.org:2376 --tls info
```

Create VCH Wizard

To disable client certificate verification, set the Client Certificates switch to the gray OFF position. You must still either upload a custom server certificate or configure an automatically generated server certificate.

vic-machine Option

```
--no-tlsverify, --kv
```

If you specify the `--no-tlsverify` option, `vic-machine create` performs the following actions during the deployment of the VCH:

- If you do not specify `--tls-server-cert` and `--tls-server-key`, automatically generates a self-signed server certificate.
If you specify any or all of tls-cname, organization, or cert-key-size, generates the server certificate with those settings.

- If you specify --tls-cert-path, saves the server certificate in the location that you specify. Otherwise, creates a folder with the same name as the VCH in the location in which you run vic-machine create.
- If you specify --no-tlsverify with no additional security options, generates a generic server certificate.
- Creates an environment file named vch_name.env in that folder, that contains the DOCKER_HOST=vch_address environment variable, that you can provide to container developers to use to set up their Docker client environment.

The --no-tlsverify option takes no arguments.

---

**Disable Secure Access**

If you use vic-machine to deploy VCHs, you can completely disable authentication of connections between Docker clients and the VCH. VCHs use neither client nor server certificates. Any Docker client can connect to the VCH if you disable TLS authentication and connections are not encrypted.

**IMPORTANT:** Disabling secure access is for testing purposes only. Do not disable secure access in production environments.

If you completely disable secure access to the VCH, container developers connect Docker clients to the VCH over HTTP on port 2375, instead of over HTTPS on port 2376. They do not need to specify any TLS options in the Docker command.

For example, you can access information about a VCH that does not use a server or client certificate by running the following command in the Docker client:

```bash
docker -H vch_dnsname.example.org.example.org:2375 info
```

**Create VCH Wizard**

It is not possible to completely disable secure access when deploying VCHs from the Create Virtual Container Host wizard.

**vic-machine Option**

```
--no-tls, -k
```

Run vic-machine create with the --no-tls option and no other security options. The --no-tls option takes no arguments.
Examples

This section provides examples of the options to use in the Docker API Access tab in the Security page of the Create Virtual Container Host wizard and in `vic-machine create`, to create VCHs that disable client certificate verification and that disable secure access completely.

- Automatically Generate a Server Certificate and Disable Client Certificate Verification
- Use Custom Server Certificates and Disable Client Certificate Verification
- Automatically Generate a Generic Server Certificate and Disable Client Certificate Verification
- Disable Secure Access

Automatically Generate a Server Certificate and Disable Client Certificate Verification

This example deploys a VCH with the following security configuration.

- Uses an automatically generated server certificate for which you provide some configuration information.
- Disables client certificate authentication.

Create VCH Wizard

1. Set the **Client Certificates** switch to the gray OFF position.
2. Under Server Certificates, select the **Auto-generate** radio button.
3. In the **Common Name (CN)** text box, enter the IP address, FQDN, or a domain wildcard for the client systems that connect to this VCH.
4. In the **Organization (O)** text box, leave the default setting of the VCH name, or enter a different organization identifier.
5. In the **Certificate key size** text box, leave the default setting of 2048 bits, or enter a higher value.

vic-machine Command

This example `vic-machine create` command specifies `--no-tlsverify` to disable client authentication, but configures the automatically generated server certificate by specifying `--tls-cname`, `--tls-cert-path`, `--organization`, and `--certificate-key-size`.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--tls-cname *.example.org
--tls-cert-path path_to_cert_folder
```
--organization 'My Organization'
--certificate-key-size 3072
--no-tlsverify

**Result**

When you run this command, `vic-machine create` performs the following operations:

- Automatically generates a server certificate of size 3072 bits, setting the CN to *.example.org., and the organization to My Organization.
- Saves the server certificate in the location that you specify in `--tls-cert-path`.
- Does not generate a client certificate or CA.

You do not need to provide any certificates to container developers. However, you can provide the generated `env` file, with which they can set environment variables in their Docker client.

**Use Custom Server Certificates and Disable Client Certificate Verification**

This example deploys a VCH with the following security configuration:

- Uses a custom server certificate.
- Disables client certificate authentication.

**Create VCH Wizard**

1. Set the **Client Certificates** switch to the gray off position.
2. Under Server Certificates, select the **Existing** radio button.
3. For **Server certificate**, click **Select** and navigate to an existing `server-cert.pem` file.
4. For **Server private key**, click **Select** and navigate to an existing `server-key.pem` file.

**vic-machine Command**

This example `vic-machine create` command provides the paths relative to the current location of the `*.pem` files for the custom server certificate and key files, and specifies the `--no-tlsverify` option to disable client authentication.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--tls-server-cert ../some/relative/path/certificate_file.pem
```
Command

This example deploys a VCH with the following configuration:

- Specifies `--no-tlsverify` to disable client authentication.
- Provides no options to configure the automatically generated server certificate.

```bash
tls-server-key ../some/relative/path/key_file.pem
--no-tlsverify
```

Result

When you run this command, `vic-machine create` performs the following operations:

- Uploads the custom server certificate and key to the VCH.
- Does not generate a client certificate or CA.

You do not need to provide any certificates to container developers. However, you can provide the generated `env` file, with which they can set environment variables in their Docker client.

Automatically Generate a Generic Server Certificate and Disable Client Certificate Verification

This example deploys a VCH with the following security configuration.

- Uses an automatically generated server certificate for which you provide no configuration information.
- Disables client certificate authentication.

Create VCH Wizard

The Create Virtual Container Host wizard does not support this configuration.

Command

This example deploys a VCH with the following configuration:

- Specifies `--no-tlsverify` to disable client authentication.
- Provides no options to configure the automatically generated server certificate.

```bash
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

Result

When you run this command, `vic-machine create` performs the following operations:
Because no other security options are specified, automatically generates a generic server certificate.

- Does not generate a client certificate or CA.

You do not need to provide any certificates to container developers. However, you can provide the generated `env` file, with which they can set environment variables in their Docker client.

**Disable Secure Access**

This example completely disables secure access to the VCH. All communication between the VCH and Docker clients is insecure and unencrypted.

**Create VCH Wizard**

It is not possible to completely disable secure access when deploying VCHs from the Create Virtual Container Host wizard.

**vic-machine Command**

This example deploys a VCH that specifies `--no-tls` to disable client and server authentication.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tls
```

**Result**

When you run this command, `vic-machine create` does not generate any certificates. Connections to the VCH are possible by using HTTP rather than HTTPS.

You do not need to provide any certificates to container developers. No `env` file is generated, as there are no environment variables to set.

**What to Do Next**

If you are using the Create Virtual Container Host wizard, click Next to Configure Registry Access.
Configure Registry Access

If you use vSphere Integrated Containers Registry, or if container developers need to access Docker images that are stored in other private registry servers, you must configure virtual container hosts (VCHs) to allow them to connect to these private registry servers when you deploy the VCHs. VCHs can connect to both secure and insecure private registry servers. You can also configure VCHs so that they can only access images from a whitelist of approved registries.

Obtain the vSphere Integrated Containers Registry Certificate

To configure a VCH so that it can connect to vSphere Integrated Containers Registry, you must obtain the registry certificate and pass it to the VCH when you create that VCH.

When you deployed the vSphere Integrated Containers appliance, vSphere Integrated Containers Registry auto-generated a Certificate Authority (CA) certificate. You can download the registry CA certificate from the vSphere Integrated Containers Management Portal.

Procedure

1. In a browser, go to the vSphere Integrated Containers appliance welcome page.

   You can specify the address in one of the following formats:

   - vic_appliance_address
   - http://vic_appliance_address
   - https://vic_appliance_address:9443

   The first two formats redirect automatically to https://vic_appliance_address:9443. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, the redirect uses the port specified during deployment. If you specify HTTPS, you must include the port number in the address.

2. Click the link to Go to the vSphere Integrated Containers Management Portal.

3. Log in with a vSphere administrator or Management Portal administrator user account.

   vSphere administrator accounts for the Platform Service Controller with which vSphere Integrated Containers is registered are automatically granted the Management Portal administrator role.

4. Go to Administration > Configuration, and click the link to download the Registry Root Certificate.

Options

The following sections each correspond to an entry in the Registry Access page of the Create Virtual Container Host wizard. Each section also includes a description of the corresponding vic-machine create option.
Certain options in this section are exposed in the `vic-machine create help` if you run `vic-machine create --extended-help`, or `vic-machine create -x`.

**Whitelist Registry Mode**

You can restrict the registries to which a VCH allows access by setting the VCH in whitelist registry mode. You can allow VCHs to access multiple registries. In whitelist mode, users can only access those registries that you have specified. Users cannot access any registries that are not in the whitelist, even if they are public registries, such as Docker Hub. You can configure a VCH so that it includes both secure and insecure registries in its whitelist.

You can specify whitelisted registries in the following formats:

- IP addresses or FQDN to identify individual registry instances. During deployment, vSphere Integrated Containers Engine validates the IP address of the registry.
- CIDR formatted ranges, for example, 192.168.1.1/24. If you specify a CIDR range, the VCH adds to the whitelist any IP addresses within that subnet. Note that vSphere Integrated Containers Engine does not validate CIDR defined ranges during deployment.
- Wildcard domains, for example, *.example.com. If you specify a wildcard domain, the VCH adds to the whitelist any IP addresses or FQDNs that it can validate against that domain. A numeric IP address causes VCHs to perform a reverse DNS lookup to validate against that wildcard domain. Note that vSphere Integrated Containers Engine does not validate wildcard domains during deployment.

**Whitelisting Secure Registries**

VCHs include a base set of well-known certificates from public CAs. If a registry requires a certificate to authenticate access, and if that registry does not use one of the CAs that the VCH holds, you must provide the CA certificate for that registry to the VCH. If the VCH is running in whitelist mode, you must also add that registry to the whitelist.

- If you provide a registry certificate but you do not also specify that registry in the whitelist, the VCH does not allow access to that registry.
- If you specify a registry in the whitelist, but you do not provide a certificate and the registry’s CA is not in the set of well-known certificates in the VCH, the VCH does not allow access to that registry.
- If you specify a registry as insecure, it is added to the whitelist.

**Whitelisting Insecure Registries**

You can add registries that you designate as insecure registries to the whitelist. If you designate a registry as an insecure registry, VCHs do not verify the certificate of that registry when they pull images.

If you add a registry to the whitelist, but you do not specify that registry as an insecure registry, the VCH attempts to verify the registry by using certificates. If it does not find a certificate, the VCH does not allow access to that registry.

**VCH Whitelists and Registry Lists in vSphere Integrated Containers Management Portal**

If you intend to use a VCH with vSphere Integrated Containers Management Portal, the management portal allows you to provision containers from lists of registries that Management Portal administrators and DevOps administrators configure. However, if you deploy a VCH with whitelist mode enabled, and if the whitelist on the VCH is more
restrictive than the global and project registry lists in management portal, you can only use management portal to
provision containers from registries that the VCH permits in its whitelist, even if the VCH is included in a project that
permits other registries.

As a consequence of this, when using whitelist mode on VCHs that you intend to register with vSphere Integrated
Containers Management Portal, you must consider the following points:

- If you enable whitelist mode on a VCH, the whitelist on the VCH should be broader in scope than the lists that
  Management Portal administrators and DevOps administrators configure in the management portal. For
  example, you can include a wildcard domain in the VCH whitelist, such as *.example.com, and then more finely
  grained domains in the project lists, such as registry1.example.com, registry2.example.com, and so on.
- If the whitelist on the VCH is more restrictive than the registry lists in management portal, users cannot provision
  containers from the registries that are not whitelisted by the VCH, even if they are present in the management
  portal lists.
- If the whitelist on the VCH is less restrictive than the registry lists configured in management portal, if users
  connect directly to the VCH, they will be able to pull images from registries that management portal would not
  permit.
- After you deploy a VCH and add it in a project in management portal, if you encounter a problem because the
  VCH whitelist is more restrictive than the management portal registry lists, you must redeploy the VCH with either
  no whitelist, a more permissive whitelist, or a whitelist that exactly matches the lists in management portal. You
  cannot modify a VCH whitelist after the initial deployment of the VCH.

VCH Whitelists and Content Trust

If you register a VCH with a project in vSphere Integrated Containers Management Portal, and if content trust is
enabled on that project, vSphere Integrated Containers automatically modifies the whitelist settings on the VCH in
order to enforce content trust.

- For general information about content trust, see Content trust in Docker in the Docker documentation.
- For information about content trust in vSphere Integrated Containers, see Enabling Content Trust in Projects in
  vSphere Integrated Containers Management Portal Administration.

The following example describes how enabling content trust on a project affects a VCH that is not running in whitelist
mode:

- Deploy a VCH without enabling whitelist mode.
- Register the VCH with a project in vSphere Integrated Containers Management Portal.
- If content trust is enabled on the project, or if you subsequently enable content trust after adding the VCH to the
  project, vSphere Integrated Containers automatically enables whitelist mode on the VCH.
- vSphere Integrated Containers adds the project registry to the VCH whitelist.
- If the project includes more than one registry, only the registry instance that is running in the vSphere Integrated
  Containers appliance is added to the whitelist.
- The VCH can now only pull signed and verified images from the registry instance that is running in the vSphere
  Integrated Containers appliance that includes the project.

The following example demonstrates how enabling content trust on a project affects a VCH that is already running in
whitelist mode:

- Deploy a VCH with whitelist mode enabled, and with one or more registries in the whitelist.
Register the VCH with a project in vSphere Integrated Containers Management Portal.
If content trust is enabled on the project, or if you subsequently enable content trust after adding the VCH to the project, vSphere Integrated Containers automatically restricts the whitelist that you configured on the VCH.
The VCH whitelist now includes only the registry instance that is running in the vSphere Integrated Containers appliance.
The VCH can now only pull signed and verified images from the registry instance that is running in the vSphere Integrated Containers appliance that includes the project.

If you subsequently disable content trust on a project, or remove a VCH from a project that implements content trust, the VCH reverts to the whitelist configuration with which it was deployed.

If the VCH was not deployed with whitelist mode enabled, whitelist mode is disabled.
If the VCH was deployed with a whitelist, this whitelist is restored.

If you delete the vSphere Integrated Containers appliance without removing the VCH from the project, the VCH remains paired with that non-existent project. You must run `vic-machine configure` on the VCH to restore the whitelist settings.

Create VCH Wizard

1. Set the Whitelist registry mode switch to the green ON position.
2. In the Whitelist registries text box, enter the IP address or FQDN and port number for the registry server, or enter a wildcard domain.
3. Select Secure or Insecure from the drop-down menu, to specify whether the registry requires a certificate for access.
4. Optionally click + to add more registries to the whitelist.

If you select Secure for a given registry, you must also provide a certificate for that registry. For information about providing certificates, see Additional Registry Certificates below.

vic-machine Option

```
--whitelist-registry --wr
```

If you specify `--whitelist-registry` at least once when you run `vic-machine create`, the VCH runs in whitelist mode.

You use `--whitelist-registry` in combination with the `--registry-ca` or `--insecure-registry` options, to either provide the registry certificate or to allow insecure access to that registry. If you specify a registry as an insecure registry but you do not specify this registry in the whitelist, vSphere Integrated Containers Engine automatically adds the registry to the whitelist only if whitelist mode is activated by specifying at least one other registry in `--whitelist-registry`

```
--whitelist-registry registry_address
--registry-ca path_to_ca_cert
```

```
--whitelist-registry registry_address
--insecure-registry registry_address
```
Insecure Registry Access

If you designate a registry server as an insecure registry, the VCH does not verify the certificate of that registry when it pulls images. Insecure registries are not recommended in production environments.

If you authorize a VCH to connect to an insecure registry server, the VCH first attempts to access the registry server via HTTPS, then attempts to connect with HTTP if access via HTTPS fails. VCHs always use HTTPS when connecting to registry servers for which you have not authorized insecure access.

NOTE: You cannot designate vSphere Integrated Containers Registry instances as insecure registries. Connections to vSphere Integrated Containers Registry always require HTTPS and a certificate.

Create VCH Wizard

1. Leave the Whitelist registry mode switch in the gray OFF position.
   
   If you are using the Create Virtual Container Host wizard and you activate whitelist registry mode, you designate registries as insecure when you add them to the whitelist.

2. In the IP or FQDN text box under Insecure registry access, enter the IP address or FQDN for the registry server to designate as insecure.

3. If the registry server listens on a specific port, add the port number in the Port text box.

4. Optionally click the + button to add more registries to the list of insecure registries to which this VCH can connect.

vic-machine Option

--insecure-registry, --dir

You can specify --insecure-registry multiple times if multiple insecure registries are permitted. If the registry server listens on a specific port, add the port number to the URL.

Usage:

```
--insecure-registry registry_URL_1
--insecure-registry registry_URL_2:port_number
```

Additional Registry Certificates

If the VCH is to connect to secure registries, you must provide a CA certificate that can validate the server certificate of that registry. You can specify multiple CA certificates for different registries to allow a VCH to connect to multiple secure registries.

IMPORTANT: You must use this option to allow a VCH to connect to a vSphere Integrated Containers Registry instance. vSphere Integrated Containers Registry does not permit insecure connections.

Create VCH Wizard
1. Under **Additional registry certificates**, click **Select** and navigate to an existing certificate file a registry server instance.

2. Optionally click **Select** again to upload additional CAs.

**vic-machine Option**

```
--registry-ca, --rc
```

You can specify **--registry-ca** multiple times to allow a VCH to connect to multiple secure registries.

```
--registry-ca path_to_ca_cert_1
--registry-ca path_to_ca_cert_2
```

**Examples**

This section provides examples of the combinations of options to use in in the **Registry Access** page of the Create Virtual Container Host wizard and in `vic-machine create` commands.

- Authorize Access to a Whitelist of Secure and Insecure Registries
- Authorize Access to Secure and Insecure Private Registries

**Authorize Access to a Whitelist of Secure and Insecure Registries**

This example deploys a VCH with the following configuration:

- Adds to the whitelist:
  - A single vSphere Integrated Containers Registry instance that is running at 10.2.40.40:443
  - All registries running in the range 10.2.2.1/24
  - All registries in the domain *.example.com
  - A single instance of an insecure registry running at 192.168.100.207, that is not in the IP range or domain specified previously.
- Provides the CA certificate for the vSphere Integrated Containers Registry instance in the whitelist.

**Prerequisite**

Follow the instructions in *Obtain the vSphere Integrated Containers Registry Certificate* to obtain the certificate file for your vSphere Integrated Containers Registry instance.

**Create VCH Wizard**

1. Set the **Whitelist registry mode** switch to the green ON position.

2. In the **Whitelist registries** text box, enter `10.2.40.40:443` to add the vSphere Integrated Containers Registry instance to the whitelist.
3. Leave the drop-down menu for this registry set to Secure.
4. Click the + button, and enter 10.2.2.1/24 to add all registries that are running in that range to the whitelist.
5. Select Insecure from the drop-down menu to designate all registries in that range as insecure.
6. Click the + button, enter *.example.com to add all registries that are running in that domain to the whitelist, and select Insecure to designate those registries as insecure.
7. Click the + button, enter 192.168.100.207 to add the standalone registry to the whitelist, and select Insecure to designate those registries as insecure.
8. Under Additional registry certificates, click Select and navigate to the CA certificate file for the vSphere Integrated Containers Registry instance that is running at 10.2.40.443.

**vic-machine Command**

This example vic-machine create command deploys a VCH that uses the --whitelist-registry, --registry-ca, and --insecure-registry options to add a range of registries to its whitelist.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--whitelist-registry 10.2.40.40:443
--whitelist-registry 10.2.2.1/24
--whitelist-registry=*.example.com
--registry-ca=/home/admin/mycerts/ca.crt
--insecure-registry=192.168.100.207
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
```

**Result**

The VCH can only access the registries in the IP ranges and domain specified, as well as the standalone insecure registry at 192.168.100.207 and the vSphere Integrated Containers Registry instance at 10.2.40.40:443. It cannot access any other registries, even public registries like Docker Hub.

**Authorize Access to Secure and Insecure Private Registries**

This example deploys a VCH with the following configuration:

- Allows the VCH to pull images from the following insecure registries:
  - All registries in the domain *.example.com
  - A single instance of an insecure registry running at 192.168.100.207.
Prerequisite

Follow the instructions in Obtain the vSphere Integrated Containers Registry Certificate to obtain the certificate file for your vSphere Integrated Containers Registry instance.

Create VCH Wizard

1. Leave the Whitelist registry mode switch in the gray OFF position.
2. Under Insecure registry access, enter *.example.com to allow the VCH to access all registries that are running in that domain.
3. Click the + button, and enter 192.168.100.207 to allow the VCH to access the standalone registry at that address.
4. Under Additional registry certificates, click Select and navigate to the CA certificate file for your vSphere Integrated Containers Registry instance.

vic-machine Command

This example vic-machine create uses the --registry-ca and --insecure-registry options to allow access to secure and insecure registries.

```
vic-machine-operating_system create
 --target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
 --compute-resource cluster1
 --image-store datastore1
 --bridge-network vch1-bridge
 --public-network vic-public
 --insecure-registry *.example.com
 --insecure-registry 192.168.100.207:5000
 --registry-ca /home/admin/mycerts/ca.crt
 --name vch1
 --thumbprint certificate_thumbprint
 --no-tlsverify
```

Result

The VCH can access the insecure registries in the domain specified, as well as the standalone insecure registry at 192.168.100.207 and the vSphere Integrated Containers Registry instance. Because whitelist mode is not enabled, it can also access public registries like Docker Hub.

What to Do Next

If you are using the Create Virtual Container Host wizard, click Next to configure the Operations User.
Configure the Operations User

When you deploy a virtual container host (VCH), you must use an account with vSphere administrator permissions. However, day-to-day operation of the VCH requires fewer permissions. You can configure a VCH so that it uses a different operations user account for post-deployment operation.

If you use the Create Virtual Container Host wizard to deploy VCHs, it is mandatory to specify an operations user. If you use vic-machine, specifying an operations user is recommended but optional. The user account that you specify as the operations user must exist before you deploy the VCH. For information about how to create an operations user account, see Create the Operations User Account.

Options

The following sections each correspond to an entry in the Operations User page of the Create Virtual Container Host wizard. Each section also includes a description of the corresponding vic-machine create option.

Certain options in this section are exposed in the vic-machine create help if you run vic-machine create --extended-help, or vic-machine create -x.

vSphere User Credentials

A vSphere user account with which the VCH runs after deployment, which has fewer permissions than the vSphere administrator account that you use during deployment.

Create VCH Wizard

If you are using the Create VCH Wizard, it is mandatory to specify an operations user.

1. In the vSphere user credentials text box, enter the user name for an existing vSphere user account.
2. Enter the password for the specified user account.

vic-machine Options

--ops-user, no short name
--ops-password, no short name

If you do not specify --ops-user, the VCH runs with the vSphere Administrator credentials with which you deploy the VCH, that you specify in either --target or --user.

If you specify --ops-user but you do not specify --ops-password, vic-machine create prompts you to enter the password for the --ops-user account.

--ops-user user_name
--ops-password password
Grant Any Necessary Permissions

The operations user account must exist before you create a VCH. If you are deploying the VCH to a cluster, vSphere Integrated Containers Engine can configure the operations user account with all of the necessary permissions for you.

**IMPORTANT:** The option to grant any necessary permissions automatically only applies when deploying VCHs to clusters. If you are deploying the VCH to a standalone host that is managed by vCenter Server, you must configure the operations user account manually. For information about manually configuring the operations user account, see [Manually Create a User Account for the Operations User](#).

Create VCH Wizard

- Select the **Grant this user any necessary permissions** check box.
- If you manually added the necessary permissions to the operations user account, do not select the check box.

**vic-machine Option**

```
--ops-grant-perms, no short name
```

If you specify `--ops-user`, you can also specify `--ops-grant-perms` so that `vic-machine` automatically grants the necessary vSphere permissions to the operations user account. If you specify `--ops-user` but do not specify `--ops-grant-perms`, you must configure the permissions on the operations user account manually.

The `--ops-grant-perms` option takes no arguments.

```
--ops-grant-perms
```

**Example**

This example uses the user account `vic-ops@vsphere.local` as the operations user, and automatically grants the necessary permissions to that account.

**Prerequisite**

Follow the instructions in [Create the Operations User Account](#) to create a vSphere user account, `vic-ops@vsphere.local`.

Create VCH Wizard

1. In the **vSphere user credentials** text box, enter `vic-ops@vsphere.local`.
2. Enter the password for `vic-ops@vsphere.local`.
3. Select the **Grant this user any necessary permissions** check box.

**vic-machine Command**
This example `vic-machine create` command deploys a VCH with the following options:

- Specifies the account `Administrator@vsphere.local` in the `--target` option, to identify the user account with vSphere administrator privileges with which to deploy the VCH.
- Specifies the existing `vic-ops@vsphere.local` user account and its password in the `--ops-user` and `--ops-password` options, to identify the user account with which the VCH runs after deployment.
- Specifies `--ops-grant-perms` to automatically grant the necessary permissions to the `vic-ops@vsphere.local` user account.

```plaintext
vic-machine-operating-system create
--target 'Administrator@vsphere.local:vsphere_admin_password'@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--ops-user vic-ops@vsphere.local
--ops-password password
--ops-grant-perms
--thumbprint certificate_thumbprint
--no-tlsverify
```

**What to Do Next**

If you are using the Create Virtual Container Host wizard, click **Next** to review the configuration that you have made and **Finish VCH Deployment**.
Finish VCH Deployment in the vSphere Client

When you have completed all of the pages in the Create Virtual Container Host wizard, you can review the details of the virtual container host (VCH) that you have configured. You can also copy the generated `vic-machine create` command.

**Prerequisites**

You completed all of the pages of the Create Virtual Container Host wizard in the vSphere Client.

**Procedure**

1. In the Summary page, review the details of the VCH that you have configured.
   
   Expand the entries as necessary to see more configuration details.

2. Scroll down to the bottom of the page to see the generated `vic-machine create` command that results from the configuration that you have specified in the wizard.

3. (Optional) Select a platform from the Copy CLI command drop-down menu, and click the clipboard icon to copy the command to the clipboard.

   Copying the `vic-machine create` command allows you to recreate similar VCHs at the command line or by using scripting. The platform that you select corresponds to the system on which you run `vic-machine` commands.

4. Click Finish to deploy the VCH.

5. In the Virtual Container Hosts tab, click the > icon next to the new VCH to follow its deployment progress.

   At the end of a successful deployment, you can see the connection details for this VCH in the Virtual Container Hosts view.

6. (Optional) When the deployment has succeeded, click the link to the VCH Admin Portal for this VCH.

**NOTE:** The Create Virtual Container Host wizard does not include any escape characters in the generated `vic-machine` command. Consequently, if any of the values that you specified in the wizard include special characters or spaces, you must edit the saved `vic-machine` command to wrap those values in quotes before you can reuse the command to create similar VCHs. For information about using quotes to escape special characters and spaces, see Specifying Option Arguments in Using the `vic-machine` CLI Utility.

**What to Do Next**

- To experiment further with deploying VCHs, follow the procedures in Deploy a Virtual Container Host to an ESXi Host with No vCenter Server or Deploy a Virtual Container Host with a Volume Store and vSphere Integrated Containers Registry Access.
- To manage the VCHs that you have deployed, see Virtual Container Host Administration.
To register your VCHs with vSphere Integrated Containers Management Portal, see Add Container Hosts to Projects in vSphere Integrated Containers Management Portal Administration.

Troubleshooting

If you see errors during deployment, see Troubleshoot Virtual Container Host Deployment.

For information about how to access VCH logs, including the deployment log, see Access Virtual Container Host Log Bundles.
Deploy a Test VCH

This section includes examples of how to deploy a usable virtual container host (VCH) to a vCenter Server cluster, and how to deploy a very minimal VCH directly on an ESXi host.

- Deploy a VCH to an ESXi Host with No vCenter Server
- Deploy a Virtual Container Host with a Volume Store and vSphere Integrated Containers Registry Access
Deploy a Virtual Container Host to an ESXi Host with No vCenter Server

This topic provides instructions for using `vic-machine` to deploy a virtual container host (VCH) to an ESXi host that is not managed by vCenter Server. This is the most straightforward way to deploy a VCH, and is ideal for testing.

The VCH in this example is very basic and results in a VCH with extremely limited capabilities. For an example of how to deploy a more advanced VCH to a vCenter Server cluster, see Deploy a Virtual Container Host with a Volume Store and vSphere Integrated Containers Registry Access.

The ESXi host to which you deploy the VCH must match the specifications listed in the prerequisites. The example `vic-machine create` command deploys a VCH by using the minimum `vic-machine create` options possible, for demonstration purposes. You cannot use the Create Virtual Container Host wizard in the vSphere Client to deploy a VCH directly on an ESXi host.

**Prerequisites**

- Deploy the vSphere Integrated Containers appliance. For information about deploying the appliance, see Deploy the vSphere Integrated Containers Appliance.
- Download the vSphere Integrated Containers Engine bundle from the appliance and unpack it on your usual working machine. For information about how to download the bundle, see Download the vSphere Integrated Containers Engine Bundle.
- Create or obtain an ESXi host with one datastore. You can use a nested ESXi host for this example.
- Verify that the ESXi host meets the requirements in Environment Prerequisites for VCH Deployment.

**IMPORTANT**: Pay particular attention to the Networking Requirements for VCH Deployment.

- Make sure that the correct firewall port is open on the ESXi host. For information about how to open ports on ESXi hosts, see Open the Required Ports on ESXi Hosts.
- Obtain the ESXi host certificate thumbprint. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.
- Familiarize yourself with the basic options of the `vic-machine create` command described in Using the `vic-machine` CLI Utility.
- Familiarize yourself with the way in which VCHs use certificates to authenticate connections from clients. For information about certificate use by VCHs and Docker, see the Virtual Container Host Certificate Requirements.
- Install a Docker client so that you can test the deployment.

**Procedure**

1. Open a terminal on the system on which you downloaded and unpacked the vSphere Integrated Containers Engine binary bundle.
2. Navigate to the directory that contains the `vic-machine` utility:
3. Run the `vic-machine create` command.
In these examples, the password is wrapped in quotes because it contains `@`.

- **Linux OS:**
  ```bash
 $ vic-machine-linux create
 --target esxi_host_address
 --user root
 --password 'esxi_host_p@ssword'
 --no-tlsverify
 --thumbprint esxi_certificate_thumbprint
  ```

- **Windows:**
  ```bash
 $ vic-machine-windows create
 --target esxi_host_address
 --user root
 --password "esxi_host_p@ssword"
 --no-tlsverify
 --thumbprint esxi_certificate_thumbprint
  ```

- **Mac OS:**
  ```bash
 $ vic-machine-darwin create
 --target esxi_host_address
 --user root
 --password 'esxi_host_p@ssword'
 --no-tlsverify
 --thumbprint esxi_certificate_thumbprint
  ```

The `vic-machine create` command in this example specifies the minimum information required to deploy a VCH to an ESXi host:

- The address of the ESXi host on which to deploy the VCH, in the `--target` option.
- The ESXi host root user and password in the `--user` and `--password` options.
- For simplicity, disables the verification of client certificates by specifying the `--no-tlsverify` option.
- Specifies the thumbprint of the ESXi host certificate by specifying the `--thumbprint` option.

Because the ESXi host only has only one datastore and uses the VM Network network, `vic-machine create` automatically detects and uses those resources.

When deploying to an ESXi host, `vic-machine create` creates a standard virtual switch and a port group for use as the container bridge network, so you do not need to specify any network options if you do not have specific network requirements.

This example `vic-machine create` command deploys a VCH with the default name `virtual-container-host`.

**Result**

170
At the end of a successful deployment, `vic-machine` displays information about the new VCH:

```
Initialization of appliance successful
VCH ID: vch_id
VCH Admin Portal:
https://vch_address:2378
Published ports can be reached at:
vch_address
Docker environment variables:
DOCKER_HOST=vch_address:2376
Environment saved in virtual-container-host/virtual-container-host.env
Connect to docker:
docker -H vch_address:2376 --tls info
Installer completed successfully
```

**Troubleshooting**

If you see errors during deployment, see Troubleshoot Virtual Container Host Deployment.

For information about how to access VCH logs, including the deployment log, see Access Virtual Container Host Log Bundles.

**Test the Deployment of the VCH**

1. In a browser, log in to the UI for the ESXi host at `https://esxi_address/ui`.
2. Select Virtual Machines.

   You should see the VCH endpoint VM.

3. Select Networking > Port groups.

   You should see a port group that has the same name as the VCH endpoint VM. This is the port group that vSphere Integrated Containers created for use as the VCH bridge network.

4. In a Docker client, run the `docker info` command to confirm that you can connect to the VCH.

   ```
 docker -H vch_address:2376 --tls info
   ```

   You should see confirmation that the Storage Driver is `vSphere Integrated Containers Backend Engine`.

5. In your Docker client, pull a Docker container image from Docker Hub into the VCH.

   For example, pull the `BusyBox` container image.

   ```
 docker -H vch_address:2376 --tls pull busybox
   ```
6. In the ESXi host UI, open the **Datastore browser** and select the datastore.

   You should see that vSphere Integrated Containers Engine has created a folder that has the same name as the VCH. This folder contains the VCH endpoint VM files and a folder named **vic**, in which to store container image files.

7. Expand the **vic** folder to navigate to the **images** folder.

   The **images** folder contains folders for each container image that you pull into the VCH. The folders contain the container image files.

8. In your Docker client, run the Docker container that you pulled into the VCH.

   ```
 docker -H vch_address:2376 --tls run --name test busybox
   ```

9. In the ESXi host UI, go to **Virtual Machines**.

   You should see a VM named **test-container_id**. This is the container VM that you created from the **BusyBox** image.

10. In the ESXi host UI, open the **Datastore browser** and select the datastore.

    At the top-level of the datastore, you should see a folder that uses the container ID as its name. The folder contains the files for the container VM that you created.
Deploy a Virtual Container Host with a Volume Store and vSphere Integrated Containers Registry Access

It is possible deploy a very basic virtual container host (VCH) with a minimal configuration for testing purposes. For example, configuring access to an image registry or designating a volume store is not mandatory when you deploy a VCH. For an example of the most minimal possible deployment, without registry access or a volume store, see Deploy a VCH to an ESXi Host with No vCenter Server.

However, in real-world deployments, you usually need to access private registries, and commonly used container images very often need to create volumes. Consequently, to create a useful test VCH, you should configure it for private registry access and add at least one volume store. In environments in which DHCP is not available, you must also configure a static IP address for the VCH endpoint VM on at least the public network.

This example shows how to use both the Create Virtual Container Host wizard and vic-machine to create a VCH with the following configuration:

- A static IP address for the VCH endpoint VM on the public network.
- A volume store named default, in which containers can create anonymous volumes.
- Access to a vSphere Integrated Containers Registry instance, from which to pull images.

For simplicity, this example deploys a VCH without client certificate verification, so that container application developers do not need to use a TLS certificate to connect a Docker client to the VCH. However, the connection between the VCH and the registry still requires certificate authentication, so you must download the root certificate for vSphere Integrated Containers Registry and upload it to the VCH.

**NOTE:** If this is the first time that you are deploying a VCH, it is recommended to use the Create Virtual Container Host wizard rather than vic-machine.

Prerequisites

- Deploy the vSphere Integrated Containers appliance. For information about deploying the appliance, see Deploy the vSphere Integrated Containers Appliance.
- Download the vSphere Integrated Containers Engine bundle from the appliance and unpack it on your usual working machine. For information about how to download the bundle, see Download the vSphere Integrated Containers Engine Bundle.
- If you did not do so when deploying the appliance, install the vSphere Client plug-in. For information, see Reinitialize the vSphere Integrated Containers Appliance. By default, the plug-in is installed automatically.
- Create or obtain a vCenter Server instance with the following configuration:
  - At least one datacenter
  - At least one cluster with at least two ESXi hosts. You can use nested ESXi hosts for this example. VMware recommends that you enable VMware vSphere Distributed Resource Scheduler (DRS) on clusters whenever possible.
  - At least one shared datastore, that is accessible by both of the ESXi hosts.
  - One VMware vSphere Distributed Switch with two port groups named vic-bridge and vic-public.
- Verify that your vCenter Server instance and all of the ESXi hosts in the cluster meet the requirements in Environment Prerequisites for VCH Deployment.

**IMPORTANT:** Pay particular attention to the Networking Requirements for VCH Deployment.

- Make sure that the correct firewall ports are open on the ESXi hosts. For information about how to open ports on ESXi hosts, see Open the Required Ports on ESXi Hosts.
- Obtain the vCenter Server certificate thumbprint. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.
- If you intend to use the CLI utility to deploy the VCH, familiarize yourself with the basic options of the `vic-machine create` command described in Using the `vic-machine` CLI Utility.
- Familiarize yourself with the bridge network, public network, image store, and volume store as described in Configure Bridge Networks, Configure the Public Network, and Virtual Container Host Storage Capacity.
- Familiarize yourself with the way in which VCHs use certificates to authenticate connections from clients. For information about certificate use by VCHs and Docker, see the Virtual Container Host Certificate Requirements.
- Obtain the root certificate for vSphere Integrated Containers Registry. For information about how to obtain the certificate, see Obtain the vSphere Integrated Containers Registry Certificate.
- If you intend to use the Create Virtual Container Host wizard in the vSphere Client, create a vSphere user account for the operations user. For information about creating the operations user account, see Create the Operations User Account.
- Install a Docker client so that you can test the deployment.

## Create VCH Wizard

1. Log in to the HTML5 vSphere Client, click the vSphere Client logo in the top left corner, and click **vSphere Integrated Containers**.
2. Click **vSphere Integrated Containers** in the main panel, select the **Virtual Container Hosts** tab, and click **+ New Virtual Container Host**.
3. On the General Settings page, enter a name for the VCH, for example, `test_vch`, and click **Next**.
4. On the Compute Capacity page, expand the **Compute resource** inventory hierarchy, select the cluster on to which to deploy the VCH, and click **Next**.
5. On the Storage Capacity page, select a datastore to use as the Image Datastore.
6. Remain on the Storage Capacity page and configure the volume datastore.
   i. Set the **Enable anonymous volumes** switch to the green ON position.
   ii. Select a datastore to use as a volume datastore. This does not have to be the same datastore as you used for the image store.
   iii. Optionally provide the path to a folder in that datastore.
   iv. Click **Next**.
7. On the Configure Networks page, select the existing `vic-bridge` and `vic-public` port groups for use as the bridge and public networks.
8. Remain on the Configure Networks page and configure a static IP address for the VCH endpoint VM on the public network.
   i. Select the **Static** radio button.
   ii. Enter an IP address with a network mask in the **IP Address** text box, for example `192.168.1.10/24`.
   iii. Enter the IP address of the gateway in the **Gateway** text box, for example `192.168.0.1`.

174
iv. Enter a comma-separated list of DNS server addresses in the **DNS server** text box, for example 192.168.10.10,192.168.10.11.

v. Click **Next**.

9. On the Security page, for simplicity, set the **Client Certificates** switch to the gray OFF position to disable client certificate verification, leave the default options for automatic server certificate generation, and click **Next**.

10. On the Registry Access page, under Additional registry certificates, click **Select** to upload the certificate for vSphere Integrated Containers Registry, then click **Next**.

11. On the Operations User page, enter the user name and password for an existing vSphere account, select the **Grant this user any necessary permissions** check box, and click **Next**.

12. On the Summary page, scroll down to view the generated `vic-machine create` command, and optionally copy it for future use.

13. Click **Finish**.

**Result**

At the end of a successful deployment, the Virtual Container Hosts tab displays connection information for the new VCH.

**vic-machine Command**

1. Open a terminal on the system on which you downloaded and unpacked the vSphere Integrated Containers Engine binary bundle.

2. Navigate to the directory that contains the **vic-machine** utility:

3. Run the **vic-machine create** command that corresponds to your working system.

   In these examples, the user name is wrapped in quotes because it contains `@`. The password is also wrapped in quotes because passwords usually contain special characters. Note that you use single quotes on Linux and Mac OS, and double quotes on Windows.

   - **Linux**:

     ```
 vic-machine-linux create \\n --target vcenter_server_address/dc1 \\n --user 'Administrator@vsphere.local' \\n --password 'p@ssword123!' \\n --compute-resource cluster1 \\n --image-store datastore1 \\n --bridge-network vch-bridge \\n --public-network vic-public \\n --public-network-ip 192.168.1.10/24 \\n --public-network-gateway 192.168.0.1 \\n --dns-server 192.168.10.10 \\n --dns-server 192.168.10.11 \\n --name test_vch \\n --thumbprint vcenter_server_certificate_thumbprint \\n --no-tlsverify \\
     ```
```
--registry-ca cert_path/ca.crt \
--volume-store datastore2:default
```

- **Windows:**

```
vic-machine-windows create ^
--target vcenter_server_address/dc1 ^
--user "Administrator@vsphere.local" ^
--password "p@ssword123!" ^
--compute-resource cluster1 ^
--image-store datastore1 ^
--bridge-network vch-bridge ^
--public-network vic-public ^
--public-network-ip 192.168.1.10/24 ^
--public-network-gateway 192.168.0.1 ^
--dns-server 192.168.10.10 ^
--dns-server 192.168.10.11 ^
--name test_vch ^
--thumbprint vcenter_server_certificate_thumbprint ^
--no-tlsverify ^
--registry-ca cert_path/ca.crt ^
--volume-store datastore2:default
```

- **Mac OS:**

```
vic-machine-darwin create \
--target vcenter_server_address/dc1 \
--user 'Administrator@vsphere.local' \
--password 'p@ssword123!' \
--compute-resource cluster1 \
--image-store datastore1 \
--bridge-network vch-bridge \
--public-network vic-public \
--public-network-ip 192.168.1.10/24 \
--public-network-gateway 192.168.0.1 \
--dns-server 192.168.10.10 \
--dns-server 192.168.10.11 \
--name test_vch \
--thumbprint vcenter_server_certificate_thumbprint \
--no-tlsverify \
--registry-ca cert_path/ca.crt \
--volume-store datastore2:default
```

The `vic-machine create` command in this example specifies the following options:

- The address of the vCenter Server instance on which to deploy the VCH and datacenter `dc1` in the `--target`
option.
- The vCenter Single Sign-On user and password for a vSphere administrator account in the `--user` and `--password` options.
- The cluster `cluster1`, as the location in the vCenter Server inventory in which to deploy the VCH.
- The port group named `vic-bridge`, for use as the container bridge network.
- The port group named `vic-public`, for use as the public network.
- A static IP address with a network mask for the VCH endpoint VM on the public network in the `--public-network-ip` option, along with the addresses for the gateway and two DNS servers in the `--public-network-gateway` and `--dns-server` options.
- The shared datastore named `datastore1`, for use as the image store, in which to store container images, in the `--image-store` option.
- For simplicity, disables the verification of client certificates by specifying the `--no-tlsverify` option.
- Names the VCH `test_vch` in the `--name` option.
- The thumbprint of the vCenter Server host certificate by specifying the `--thumbprint` option.
- The path to the certificate for vSphere Integrated Containers Registry in the `--registry-ca` option.
- A volume store named `default` in the `--volume-store` option. In this example, the datastore to use as the volume store is `datastore2` that is not the same datastore as is used for the image store.

You could also specify `--volume-store nfs://nfs_server/path_to_share_point:default` to designate an NFS share point as the default volume store.

**Result**

At the end of a successful deployment, `vic-machine` displays information about the new VCH:

```
Initialization of appliance successful
VCH ID: vch_id
VCH Admin Portal: https://vch_address:2378
Published ports can be reached at: vch_address
Docker environment variables:
DOCKER_HOST=vch_address:2376
Environment saved in test_vch/test_vch.env
Connect to docker:
docker -H vch_address:2376 --tls info
Installer completed successfully
```

Now you can Test the Deployment of the VCH.

**Troubleshooting**

If you see errors during deployment, see Troubleshoot Virtual Container Host Deployment.
For information about how to access VCH logs, including the deployment log, see Access Virtual Container Host Log Bundles.

**Test the Deployment of the VCH**

After you deploy a VCH, you can pull container images from a public repository, such as Docker Hub, and deploy container VMs from them in the VCH. In this way, you can see how deploying and running container VMs affects your vSphere environment.

You can also use vSphere Integrated Containers Management Portal and Registry to test your VCH. This version of vSphere Integrated Containers includes an image repository named `dch-photon`, that is pre-loaded in the `default-project` in vSphere Integrated Containers Registry. The `dch-photon` image requires that the VCHs on which it is deployed have a specific minimum configuration:

- The VCH must be able to pull the `dch-photon` image from the vSphere Integrated Containers Registry instance. You must provide the registry’s CA certificate to the VCH so that it can connect to the registry.
- A `dch-photon` container creates an anonymous volume, and as such requires a volume store named `default`.

The VCH that you deployed in the Example above meets these requirements, so you can use the `dch-photon` image to test it.

This example uses the `dch-photon` image for demonstration purposes only. For information about how container developers can actually use `dch-photon`, see Building and Pushing Images with the dch-photon Docker Engine in Developing Applications with vSphere Integrated Containers.

vSphere Integrated Containers 1.5.x supports `dch-photon` version 17.06.

**Procedure**

1. Log in to the vSphere Client, go to **Hosts and Clusters**, and select the cluster on which you deployed the VCH. You should see a resource pool with the name that you set for the VCH. The resource pool contains the VCH endpoint VM.

2. In a Docker client, run the `docker info` command to confirm that you can connect to the VCH.

   ```bash
 docker -H vch_address:2376 --tls info
   ```

   You should see confirmation that the Storage Driver is `vSphere Integrated Containers Backend Engine`.

3. In your Docker client terminal, pull a Docker container image from Docker Hub into the VCH. For example, pull the `BusyBox` container image.

   ```bash
 docker -H vch_address:2376 --tls pull busybox
   ```

4. In the vSphere Client, go to **Storage**, right-click the datastore that you designated as the image store, and select **Browse Files**.
You should see that vSphere Integrated Containers Engine has created a folder that has the same name as the VCH. This folder contains the VCH endpoint VM files and a folder named vic. Expand this folder and navigate to the images folder. The images folder contains folders for each container image that you pull into the VCH. The folders contain the container image files.

5. In your Docker client terminal, run the container that you pulled into the VCH.

```
docker -H vch_address:2376 --tls run --name test busybox
```

6. In the vSphere Client, go to Hosts and Clusters and expand the VCH resource pool.

You should see a VM named test-container_id. This is the container VM that you created from the BusyBox image.

7. In the vSphere Client, go to Storage and select the datastore that you designated as the image store.

At the top-level of the datastore, you should see a folder that uses the container ID as its name. The folder contains the files for the container VM that you just created.

8. In a browser, log in to the vSphere Integrated Containers Management Portal at https://vic_appliance_address with a vSphere administrator, Management Portal administrator, or DevOps administrator user account.

9. Select Home and make sure that the Project drop-down menu is set to default-project.

10. Under Infrastructure, select Container Hosts and click +Container Host to register the VCH with the management portal.

   i. Enter a name for the VCH, for example, test-vch.
   ii. Leave Type set to VCH.
   iii. For URL, enter the address of the VCH in the format https://vch_ip_address:2376, click Save, and click Yes to accept the VCH certificate.

11. Under Deployments, select Containers and click +Container.

   i. Type dch in the Image search box and select the dch-photon image that is pre-loaded in vSphere Integrated Containers Registry:

```
vic_appliance_address:443/default-project/dch-photon
```

   ii. Click in the Search for tags box and select 17.06.
   iii. Enter a name for the container VM, for example dch-photon-test, and click Provision.

If the dch-photon-test container deploys correctly, it shows up as running in the Containers view, alongside the stopped test container that you ran in the VCH from the Docker client.

12. Go back to the vSphere Client, navigate to the vSphere Integrated Containers view, and select the Containers tab.

You should see the dch-photon-test container in the list of container VMs that are running in this vCenter Server instance.

13. Go to Hosts and Clusters and expand the resource pool for the test_vch VCH.

You should see the dch-photon-test container VM running in the resource pool.
14. Go back to Storage, right-click the datastore that you designated as the volume store, and select **Browse Files**.

You should see that vSphere Integrated Containers Engine has created a folder named **VIC** at the top level of the datastore. This folder contains a subfolder named **volumes**, that contains folders for the volumes created by the **dch-photon** container VM. These folders contain the VDMK files for those volumes.

**What to Do Next**

The VCH and the **dch-photon** container VM are ready for container developers to use. For information about how developers connect to vSphere Integrated Containers Registry from Docker clients, and how they can use **dch-photon**, see the following topics in *Developing Applications with vSphere Integrated Containers*:

- Configure the Docker Client for Use with vSphere Integrated Containers
- Building and Pushing Images with the dch-photon Docker Engine
Virtual Container Host Boot Options

The `vic-machine create` utility provides options that change the location of the ISO files from which virtual container hosts (VCHs) and container VMs boot. Optionally use the boot options if you have a centralized store of ISO files.

You can also replace the standard Photon OS 2.0 kernel that runs in container VMs by uploading a custom `bootstrap.iso` file to a VCH. For example, you can upload a custom RedHat Linux ISO file so that container VMs run on RedHat rather than on Photon OS.

vic-machine Options

The options in this topic are only available with the `vic-machine create` command. They are not available in the Create Virtual Container Host wizard in the vSphere Client.

---

**--appliance-iso**

Short name: `--ai`

The path to the ISO image from which the VCH appliance boots. Set this option if you have moved the `appliance.iso` file to a folder that is not the folder that contains the `vic-machine` binary or is not the folder from which you are running `vic-machine`.

NOTES:

- Do not use the `--appliance-iso` option to point `vic-machine` to an `--appliance-iso` file that is of a different version to the version of `vic-machine` that you are running.
- You cannot use the `--appliance-iso` option to replace the standard Photon OS kernel that runs the appliance with an alternative, custom kernel.

Usage:

Include the name of the ISO file in the path.

```
--appliance-iso path_to_ISO_file/appliance.iso
```

---

**--bootstrap-iso**

Short name: `--bi`

The path to the ISO image from which to boot container VMs. Set this option if you have moved the `bootstrap.iso` file to a folder that is not the folder that contains the `vic-machine` binary or is not the folder from which you are running `vic-machine`. Alternatively, use this option if you want container VMs to run a custom Linux kernel rather than the standard Photon OS kernel. For information about how to create a custom `bootstrap.iso` file to use instead of the standard Photon OS `bootstrap.iso` file, see the VIC Engine Appliance and Container VM ISOs document in the vSphere Integrated Containers Engine GitHub repository.
NOTE: If you use the standard Photon OS bootstrap.iso file, do not use the --bootstrap-iso option to point vic-machine to a bootstrap.iso file that is of a different version to the version of vic-machine that you are running.

Usage:

Include the name of the ISO file in the path.

```
--bootstrap-iso path_to_ISO_file/bootstrap.iso
```

Example **vic-machine Commands**

If you moved the appliance.iso or bootstrap.iso file to a location that is not the folder that contains the vic-machine binary, or if you want to boot container VMs from an alternative ISO file, you must point vic-machine to those ISO files.

This example **vic-machine create** command deploys a VCH that specifies --appliance-iso to direct vic-machine to the location in which you stored the appliance.iso file.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
--appliance-iso path_to_iso/appliance.iso
```

This example **vic-machine create** command deploys a VCH that specifies --bootstrap-iso to direct vic-machine to the location in which you stored the bootstrap.iso file. This might be because you moved the standard bootstrap.iso file to a different location, or because you are using a custom bootstrap.iso file.

```
vic-machine-operating_system create
--target 'Administrator@vsphere.local':password@vcenter_server_address/dc1
--compute-resource cluster1
--image-store datastore1
--bridge-network vch1-bridge
--public-network vic-public
--name vch1
--thumbprint certificate_thumbprint
--no-tlsverify
--bootstrap-iso path_to_iso/bootstrap.iso
```
Virtual Container Hosts Sizing Guidelines

Sizing of virtual container hosts (VCHs) depends on the workload that you need to run. While deploying a VCH, consider the sizing guidelines and resources that are consumed by a VCH during boot.

Guidelines

Sizing of VCHs can be modified by configuring resource pool limits. If a VCH requires more resources, or if it consumes too many resources, you can configure CPU and memory allocations on the VCH resource pool by using the different `vic-machine configure --memory` and `--cpu` options.

Remember the following points while configuring the options:

- The image store exists directly on the datastore and the footprint is directly related to the images that have been downloaded.
- The read/write layers of the container VM exist directly on the datastore within the VM folders and are based on redo logs and hence relate directly to the amount of data written.
- Volumes exist on whichever datastore or NFS server that the volume store is configured for. These volumes are thin by default and the footprint relates to the amount of data written.
- You can modify the resource pool live without stopping container VMs or restarting the endpoint VM via the vSphere UI.
- Do not use the ESXi host client to edit a running endpointVM directly. Instead, use the the vCenter client or power off the endpointVM before editing.

For more information, see VCH Does Not Initialize Correctly

vCenter maximums will apply for general scale, maximum configurations, and limitations. A single vCenter Server instance can have 25,000 powered-on VMs and 35,000 registered VMs. Make sure that the number of VMFS virtual disks (VMDKs) files associated with the VMs does not exceed the maximum permitted per datastore. For more information, see vSphere Configurations Maximums Tool.

For information about modifying resource allocations for the VCH by using the options at deployment, see Virtual Container Host Compute Capacity and for modifying options after deployment, see Configure Running Virtual Container Hosts.

Resources Consumed

During boot, the minimum memory of the VCH endpoint VM is around 900 MB and it actively uses around 450MB for basic operations.

The **scratch image size**, which is the size of the filesystem that that supports the container filesystem for container VMs, defaults to 8GB. Since it is not possible to extend VMDKs that have parent disks, it is important to have a size that is large enough for the expected images for a specific VCH. For example, when a DB2 image is 50GB.
The endpoint VM CPU and memory can be modified by shutting down the endpointVM and editing the hardware specification. The CPU is primarily utilized for performing checksums of images as they are pulled, `docker diff` and `copy` operations, and NAT traffic forwarding to container VMs. The memory is used as a temporary filesystem for spooling images as they are downloaded and hence the endpointVM memory should be sufficient to hold the largest layers in an image.

The following list describes the resource consumption of container VMs with default memory 2 GB, 20s after boot. The resource consumption follows normal vSphere patterns of high active initially based on conservative assumptions, trending to actual active over time.

- MemTotal: 2052880 kB
- MemFree: 1932036 kB
- MemAvailable: 1906724 kB
- Buffers: 200 kB
- Cached: 71768 kB
- SwapCached: 0 kB
- Active: 11108 kB
- Inactive: 69260 kB
- Active(anon): 10652 kB
- Inactive(anon): 68320 kB

**NOTE:** When you a run a VCH in debug mode, it increases overhead as there is significantly more string-copying occurring.
Virtual Container Host Administration

You can monitor and perform administration tasks on virtual container hosts (VCHs) in the vSphere Client, by using `vic-machine`, and in the VCH Admin Portal.

- Virtual Container Host Administration in the vSphere Client
- Virtual Container Host Administration with `vic-machine`
- Delete Virtual Container Hosts
- Virtual Container Host Administration Portal
Virtual Container Host Administration in the vSphere Client

vSphere Integrated Containers provides a plug-in for the HTML5 vSphere Client on vCenter Server 6.5 and 6.7. The HTML5 plug-in allows you to deploy and interact with virtual container hosts (VCHs) directly in the vSphere Client.

vSphere Integrated Containers also provides a basic informational plug-in for the Flex-based vSphere Web Client on vCenter Server 6.0.

**NOTE:** vSphere Integrated Containers 1.5.2 and later versions do not include the Flex-based vSphere Web Client.

- View All VCH and Container Information
- View Individual VCH and Container Information
View vSphere Integrated Containers Information in the HTML5 vSphere Client

If you have installed the HTML5 plug-in for vSphere Integrated Containers, you can find information about your vSphere Integrated Containers deployment in the HTML5 vSphere Client.

IMPORTANT: Do not perform operations on virtual container hosts (VCHs) or container VMs in the vSphere Client inventory views. Specifically, using the vSphere Client inventory views to power off, power on, or delete the VCH endpoint VM, or to modify the VCH resource pool or folder, can cause vSphere Integrated Containers Engine to not function correctly. Always use the vSphere Integrated Containers plug-in for the vSphere Client or vic-machine to perform operations on VCHs. The vSphere Client does not allow you to delete container VMs, but do not use the vSphere Client to power container VMs on or off. Always use Docker commands or vSphere Integrated Containers Management Portal to perform operations on containers.

NOTE: More functionality will be added to the vSphere Integrated Containers plug-in in future releases.

Prerequisites

- You are running vCenter Server 6.7 or vCenter Server 6.5.0d or later. The vSphere Integrated Containers view does not function with earlier versions of vCenter Server 6.5.0.
- You installed the HTML5 plug-in for vSphere Integrated Containers.

Procedure

1. Log in to the HTML5 vSphere Client and click the vSphere Client logo in the top left corner.
2. Under Inventories, click vSphere Integrated Containers.

   The vSphere Integrated Containers view presents the number of VCHs and container VMs that you have deployed to this vCenter Server instance.

3. Click vSphere Integrated Containers in the main panel and select the Summary tab.

   The Summary tab shows the following information:
   - The version of the vSphere Integrated Containers plug-in for the vSphere Client.
   - The number of VCHs registered with this vCenter Server instance.
   - The version of the vSphere Integrated Containers appliance to which the client plug-in is connected.
   - The IP address of the vSphere Integrated Containers appliance. You can click on the IP address to go to the vSphere Integrated Containers Getting Started page.

   This information allows you to know which appliance instance is providing the vSphere Integrated Containers API endpoint. This is useful in environments in which you have deployed multiple appliances. The appliance that the client connects to might not be the one that was most recently registered with vCenter Server. Consequently, if you have deployed different versions of the appliance to vCenter Server, it is useful to know which one the client is connecting to.
4. Select the **Virtual Container Hosts** tab.

The **Virtual Container Hosts** tab provides information about the VCHs that are registered with this vCenter Server instance:

- Lists all VCHs by name. You can click the VCH name to go to the Summary tab for the VCH endpoint VM.
- Indicates that the VCH is running correctly.
- Displays the `DOCKER_HOST` environment variable that container developers use to connect to this VCH.
- Provides the link to the VCH Admin Portal for this VCH.

5. (Optional) Click the 3 vertical dots next to a VCH.

- Select **Delete** to remove the VCH.
- Select **Download VCH certificate** to download the server certificate for the VCH. Container developers might require the server certificate when they run Docker commands in `--tlsverify` client mode, if you use certificates that are not signed by a trusted certificate authority.

**NOTE**: You cannot download client certificates for VCHs from the vSphere Client. vSphere administrators distribute client certificates directly.

6. Select the **Containers** tab.

The **Containers** tab shows information about all of the container VMs that are running in this vCenter Server instance, for all VCHs:

- Lists all containers by name.
- Indicates whether the container VM is powered on or off.
- Provides information about the memory, CPU, and storage consumption of the container VM.
- Lists the port number and the protocol of any mapped ports that the container VM exposes.
- Provides links to the Summary tabs for the VCH that manages the container VM and for the VM itself.
- Displays the image from which this container VM was created.
View Individual VCH and Container Information in the vSphere Clients

After you have installed the client plug-in for vSphere Integrated Containers, you can find information about individual virtual container hosts (VCHs) and container VMs in the HTML5 vSphere Client or the Flex-based vSphere Web Client.

**IMPORTANT:** Do not perform operations on virtual container hosts (VCHs) or container VMs in the vSphere Client inventory views. Specifically, using the vSphere Client inventory views to power off, power on, or delete the VCH endpoint VM, or to modify the VCH resource pool or folder, can cause vSphere Integrated Containers Engine to not function correctly. Always use the vSphere Integrated Containers plug-in for the HTML5 vSphere Client or vic-machine to perform operations on VCHs. The vSphere Client does not allow you to delete container VMs, but do not use the vSphere Client to power container VMs on or off. Always use Docker commands or vSphere Integrated Containers Management Portal to perform operations on containers.

**Prerequisites**

- You deployed a VCH and at least one container VM.
- You installed the plug-in for vSphere Integrated Containers.
  - The vSphere Integrated Containers plug-in for the HTML5 vSphere Client plug-in is available in vSphere 6.5 and 6.7.
  - The vSphere Integrated Containers plug-in for the Flex-based vSphere Web Client is available in vSphere 6.0.

**NOTE:** vSphere Integrated Containers 1.5.2 and later versions do not include the Flex-based vSphere Web Client.

**Procedure**

1. Log in to the vSphere Client.
2. On the **Home** page, select **Hosts and Clusters**.
3. Expand the hierarchy of vCenter Server objects to navigate to the VCH resource pool.
4. Expand the VCH resource pool and select the VCH endpoint VM.

   Information about the VCH appears in the **Virtual Container Host** portlet in the **Summary** tab:
   - The **DOCKER_HOST** environment variable that container developers use to connect to this VCH.
   - The link to the VCH Admin Portal for this VCH.
5. Select a container VM.

   Information about the container VM appears in the **Container** portlet in the **Summary** tab:
   - The name of the running container. If the container developer used `docker run -name container_name` to run the container, `container_name` appears in the portlet.
   - The image from which the container was deployed.
If the container developer used `docker run -p port` to map a port when running the container, the port number and the protocol appear in the portlet.
Virtual Container Host Administration with `vic-machine`

The `vic-machine` utility provides commands that allow you to manage existing virtual container hosts (VCHs).

- Obtain `vic-machine` Version Information
- Common `vic-machine` Options
- List Virtual Container Hosts and Obtain their IDs
- Obtain General Virtual Container Host Information and Connection Details
- Obtain Virtual Container Host Configuration Information
- Configure Running Virtual Container Hosts
- Debug Running Virtual Container Hosts
Obtain **vic-machine** Version Information

You can obtain information about the version of **vic-machine** by using the **vic-machine version** command.

The **vic-machine version** command has no arguments.

**Example**

```
$ vic-machine-operating_system version
```

**Output**

The **vic-machine** utility displays the version of the instance of **vic-machine** that you are using.

```
vic-machine-operating_system
version vic_machine_version-vic_machine_build-git_commit
```

- **vic_machine_version** is the version number of this release of vSphere Integrated Containers Engine.
- **vic_machine_build** is the build number of this release.
- **tag** is the short **git commit** checksum for the latest commit for this build.
**Common vic-machine Options**

This section describes the options that are common to all *vic-machine* commands. The common options that *vic-machine* requires relate to the vSphere environment in which you deployed the virtual container host (VCH), and to the VCH itself.

Wrap any option arguments that include spaces or special characters in quotes. For information about option arguments that might require quotes, see Specifying Option Arguments in Using the *vic-machine* CLI Utility.

You can set environment variables for the `--target`, `--user`, `--password`, and `--thumbprint` options. For information about setting environment variables, see Set Environment Variables for Common *vic-machine* Options.

---

**--id**

Short name: None

The vSphere Managed Object Reference, or moref, of the VCH, for example `vm-100`. The ID of a VCH is included in the output of *vic-machine create*. You obtain the ID of a VCH by running *vic-machine ls* or *vic-machine inspect*. If you specify the `id` option in *vic-machine* commands, you do not need to specify the `--name` or `--compute-resource` options. This option is not used by *vic-machine version*.

```
--id vch_id
```

**--target**

Short name: `-t`

The IPv4 address, fully qualified domain name (FQDN), or URL of the ESXi host or vCenter Server instance on which you deployed the VCH. This option is always mandatory. You specify this option in the same way as you specify the *vic-machine create --target* option.

**--user**

Short name: `-u`

The ESXi host or vCenter Server user account with which to run the *vic-machine* command. The user account that you specify in `--user` must have vSphere administrator privileges. You specify this option in the same way as you specify *vic-machine create --user*.

**--password**

Short name: `-p`
The password for the user account on the vCenter Server on which you deployed the VCH, or the password for the ESXi host if you deployed directly to an ESXi host. You specify this option in the same way as you specify `vic-machine create --password`.

`--thumbprint`

Short name: None

The thumbprint of the vCenter Server or ESXi host certificate. You specify this option in the same way as you specify `vic-machine create --thumbprint`.

`--compute-resource`

Short name: -r

The relative path to the host, cluster, or resource pool in which you deployed the VCH. You specify this option in the same way as you specify `vic-machine create --compute-resource`.

**NOTE:** If you specify the `id` option in `vic-machine` commands, you do not need to specify the `compute-resource` option.

`--name`

Short name: -n

The name of the VCH. This option is mandatory if the VCH has a name other than the default name, `virtual-container-host`, or if you do not use the `id` option. You specify this option in the same way as you specify `vic-machine create --name`.

`--timeout`

Short name: none

The timeout period for performing operations on the VCH. Specify a value in the format `XmYs` if the default timeout is insufficient.

`--timeout 5m0s`
List Virtual Container Hosts and Obtain Their IDs

You can obtain a list of the virtual container hosts (VCHs) that are running in vCenter Server or on an ESXi host by using the `vic-machine ls` command. The `vic-machine ls` command lists VCHs with their IDs, names, and versions, and informs you whether upgrades are available for the VCHs.

The `vic-machine ls` command does not include any options in addition to the common options described in Common `vic-machine` Options.

- To obtain a list of all VCHs that are running on an ESXi host or vCenter Server instance, you must provide the address of the target ESXi host or vCenter Server.
- You must specify the user name and optionally the password, either in the `--target` option or separately in the `--user` and `--password` options.
- If your vSphere environment uses untrusted, self-signed certificates, you must specify the thumbprint of the vCenter Server instance or ESXi host in the `--thumbprint` option. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

**Example**

```
$ vic-machine-operating_system ls
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
```

**Output**

The `vic-machine ls` command lists the VCHs that are running on the ESXi host or vCenter Server instance that you specified.

```
<table>
<thead>
<tr>
<th>ID</th>
<th>PATH</th>
<th>NAME</th>
<th>VERSION</th>
<th>UPGRADE STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm-101</td>
<td>path</td>
<td>vch_1</td>
<td>version</td>
<td>Upgradeable to version</td>
</tr>
<tr>
<td>vm-102</td>
<td>path</td>
<td>vch_2</td>
<td>version</td>
<td>Up to date</td>
</tr>
<tr>
<td>[...]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vm-(n)</td>
<td>path</td>
<td>vch_(n)</td>
<td>version</td>
<td>Up to date</td>
</tr>
</tbody>
</table>
```

- The IDs are the vSphere Managed Object References, or morefs, for the VCH endpoint VMs. You can use VCH IDs when you run the `vic-machine inspect`, `debug`, `upgrade`, and `delete` commands. Using VCH IDs reduces the number of options that you need to specify when you run those commands.
- The `PATH` value depends on where the VCH is deployed:
- ESXi host that is not managed by vCenter Server:
  `/ha-datacenter/host/host_name/Resources`

- Standalone host that is managed by vCenter Server:
  `/datacenter/host/host_address/Resources`

- vCenter Server cluster:
  `/datacenter/host/cluster_name/Resources`

If VCHs are deployed in resource pools on hosts or clusters, the resource pool names appear after `Resources` in the path. You can use the information in `PATH` in the `--compute-resource` option of `vic-machine` commands.

- The `VERSION` value shows the version of `vic-machine` that was used to create the VCH. It includes the release version, the build number and the short Git commit checksum, in the format `vch_version-vch_build-git_commit`.

- The `UPGRADE STATUS` reflects whether the current version of `vic-machine` that you are using is the same as the one that you used to deploy a VCH. If the version or build number of the VCH does not match that of `vic-machine`, `UPGRADE STATUS` is `Upgradeable to vch_version-vch_build-git_commit`. 
Obtain General Virtual Container Host Information and Connection Details

You can obtain general information about a virtual container host (VCH) and its connection details by using the `vic-machine inspect` command.

In addition to the common options described in Common vic-machine Options, the `vic-machine inspect` command only includes one option, `--tls-cert-path`.

- You must specify the user name and optionally the password, either in the `--target` option or separately in the `-user` and `--password` options.
- If the VCH has a name other than the default name, `virtual-container-host`, you must specify the `--name` or `--id` option.
- If multiple compute resources exist in the datacenter, you must specify the `--compute-resource` or `--id` option.
- If your vSphere environment uses untrusted, self-signed certificates, you must specify the thumbprint of the vCenter Server instance or ESXi host in the `--thumbprint` option. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

- If the VCH implements server and client authentication (`tlsverify`) and uses a non-default location to store its certificates, specify the `--tls-cert-path` option. If you do not specify `--tls-cert-path`, `vic-machine inspect` looks for valid certificates in `$PWD`, `$PWD/$vch_name` and `$HOME/.docker`.

Examples

The following example includes the options required to obtain information about a named instance of a VCH from a simple vCenter Server environment.

```
$ vic-machine-operating_system inspect
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --name vch_name
```

The following example includes the `--tls-cert-path` option, for a VCH that stores client certificates in a non-default location.

```
$ vic-machine-operating_system inspect
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --tls-cert-path
```
Output

The `vic-machine inspect` command displays general information about the VCH, its version and upgrade status, and details about how to connect to the VCH:

- The version of the `vic-machine` utility and the version of the VCH that you are inspecting.

  
  Installer version: `vic_machine_version-vic_machine_build-git_commit`
  
  VCH version: `vch_version-vch_build-git_commit`

- The upgrade status of the VCH:

  
  VCH upgrade status:
  
  Installer has same version as VCH
  
  No upgrade available with this installer version

  
  If `vic-machine inspect` reports a difference between the version or build number of `vic-machine` and the version or build number of the VCH, the upgrade status is `Upgrade available`.

- The VCH ID:

  
  VCH ID: VirtualMachine:vm-101

  
  The vSphere Managed Object Reference, or moRef, of the VCH. You can use the VCH ID when you run the `vic-machine delete`, `configure`, or `debug` commands. Using a VCH ID reduces the number of options that you need to specify when you run those commands.

- The address of the VCH Admin portal for the VCH.

  
  VCH Admin Portal: https://vch_address:2378

- Information about the default bridge network configuration.

  
  VCH Default Bridge Network Range: 172.16.0.0/12
  VCH Default Bridge Network Width: 16

  
  **NOTE:** This information is available in vSphere Integrated Containers 1.5.2 and later.

- The address at which the VCH publishes ports.

  
  `vch_address`
The Docker environment variables that container developers can use when connecting to this VCH, depending on the level of security that the VCH implements.

- VCH with server and client authentication (`tlsverify`):
  
  ```
 DOCKER_TLS_VERIFY=1
 DOCKER_CERT_PATH=path_to_certificates
 DOCKER_HOST=vch_address:2376
  ```

  If `vic-machine inspect` is unable to find the appropriate client certificates, either in the default location or in a location that you specify in the `--tls-cert-path` option, the output includes a warning.

  ```
 Unable to find valid client certs
 DOCKER_CERT_PATH must be provided in environment or certificates specified individually via CLI arguments
  ```

- VCH with TLS server authentication but without client authentication (`no-tlsverify`):
  
  ```
 DOCKER_HOST=vch_address:2376
  ```

- VCH with no TLS authentication (`no-tls`):
  
  ```
 DOCKER_HOST=vch_address:2375
  ```

The Docker command to use to connect to the Docker endpoint, depending on the level of security that the VCH implements.

- VCH with server and client authentication (`tlsverify`):
  
  ```
 docker -H vch_address:2376 --tlsverify info
  ```

- VCH with TLS server authentication but without client authentication (`no-tlsverify`):
  
  ```
 docker -H vch_address:2376 --tls info
  ```

- VCH with no TLS authentication (`no-tls`):
  
  ```
 docker -H vch_address:2375 info
  ```
Obtain Virtual Container Host Configuration Information

You can obtain information about the configuration of a virtual container host (VCH) by using the `vic-machine inspect config` command. The `inspect config` command provides details of the options with which the VCH was deployed with `vic-machine create` or subsequently reconfigured with `vic-machine configure`.

In addition to the options described in Common `vic-machine` Options, the `inspect config` command only includes one option, `--format`, the value of which can be either `verbose` or `raw`.

- **verbose**: Provides an easily readable list of the options with which the VCH was deployed. If you do not specify `--format`, `config` provides verbose output by default.
- **raw**: Provides the options with which the VCH was deployed in command line option format. You can copy or pipe the output into a `vic-machine create` command, to create an identical VCH.

**Verbose Example**

The following example obtains the configuration of a VCH by using its VCH ID. It does not specify `--format`, so the command provides verbose output.

```
$ vic-machine-operating_system inspect config
--target 'Administrator@vsphere.local':password@vcenter_server_address
--thumbprint certificate_thumbprint
--id vch_id
```

**Output**

By default, the `vic-machine inspect config` command lists the options with which the VCH was deployed in the easily readable verbose format.

```
Target VCH created with the following options:

--target=vcenter_server_address
--thumbprint=certificate_thumbprint
--name=vch
--compute-resource=/datacenter_name/host/vcenter_server_address/Resources
--ops-user=Administrator@vsphere.local
--image-store=ds://datastore1
--volume-store=ds://datastore1/volumes:default
--volume-store=ds://datastore1/volumes:vol1
--bridge-network=vic-bridge
--public-network=vic-public
```

In addition to the minimum required `vic-machine create` options, the VCH in this example was deployed with two volume stores, named `default` and `vol1`, a specific public network, and constraints on memory and cpu usage. Also, because the VCH was not deployed with the `--ops-user` option, `config` lists `--ops-user` as `Administrator@vsphere.local`, which is the same user account as the one that was used to deploy the VCH.

### Raw Example

The following example specifies the `--format raw` option.

```bash
$ vic-machine-operating_system inspect config
 --target 'Administrator@vsphere.local':password@vcenter_server_address
 --thumbprint certificate_thumbprint
 --id vch_id
 --format raw
```

### Output

The `vic-machine inspect config` command lists the options with which the VCH was deployed in command line format.

```
--target=vcenter_server_address --thumbprint=certificate_thumbprint --name=vch1 --compute-resource=/datacenter_name/host/vcenter_server_address/Resources --ops-user=Administrator@vsphere.local --image-store=ds://datastore1 --volume-store=ds://datastore1%5Cvolumes%5Ctlsverify:default --volume-store=ds://datastore1%5Cvolumes%5Cconfigtest:vol1 --bridge-network=vic-bridge --public-network=vic-public --memory=1024 --cpu=1024
```
Configure Running Virtual Container Hosts

You can configure certain settings on an existing virtual container host (VCH) by using the `vic-machine configure` command.

When you run `vic-machine configure`, you use the options described in Common `vic-machine` Options to identify the VCH to configure. In addition to these options, the `vic-machine configure` command provides options that allow you to perform modifications on VCHs.

Using `vic-machine configure`

To see the current configuration of a VCH before you configure it, and to check the new configuration, run `vic-machine inspect config` before and after you run `vic-machine configure`. For information about running `vic-machine inspect config`, see Obtain VCH Configuration Information.

**IMPORTANT**: Running `vic-machine inspect config` before you run `vic-machine configure` is especially important if you are adding registry certificates, volume stores, DNS servers, or container networks to a VCH that already includes one or more of those elements. When you add registry certificates, volume stores, DNS servers, or container networks to a VCH, you must specify the existing configuration as well as any new configurations in separate instances of the appropriate `vic-machine inspect config` option.

When you run a `vic-machine configure` operation, `vic-machine` takes a snapshot of the VCH endpoint VM before it makes any modifications to the VCH. However, `vic-machine` does not remove the snapshot when the configuration operation finishes. You must manually remove the snapshot, after verifying that the configuration operation was successful.

The `vic-machine configure` command includes a `--force` option, that forces `vic-machine configure` to ignore warnings and non-fatal errors and continue with the configuration of a VCH. Errors such as an incorrect compute resource still cause the configuration to fail.

**CAUTION**: Specifying the `--force` option bypasses safety checks, including certificate thumbprint verification. Using `--force` in this way can expose VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using `--force` can result in unexpected topologies that would otherwise fail with an error. Do not use `--force` in production environments.

Update vCenter Server Credentials

If the vCenter Server credentials change after the deployment of a VCH, you must update that VCH with the new credentials. The VCH will not function until you update the credentials.

You provide the new vCenter Server credentials in the `vic-machine configure --ops-user` and `--ops-password` options. You use the `vic-machine configure --ops-user` and `--ops-password` options to update the credentials even if you did not specify the `vic-machine create --ops-user` and `--ops-password` options during the initial deployment of the VCH. If you
did not specify `vic-machine create --ops-user` and `--ops-password` during the deployment of the VCH, by default the VCH uses the values from `vic-machine create --user` and `--password` for the `--ops-user` and `--ops-password` settings, and it uses these credentials for day-to-day, post-deployment operation.

For example, if you specified `--user Administrator@vsphere.local` in the `vic-machine create` command, and you did not set the `vic-machine create --ops-user` and `--ops-password` options, the VCH automatically sets `--ops-user` to `Administrator@vsphere.local` and uses this account for post-deployment operations. Consequently, if the password for `Administrator@vsphere.local` changes, you must specify the `vic-machine configure --ops-user` and `--ops-password` options to update the password.

This example specifies the `--user` and `--password` options to log into vCenter Server, and then specifies `--ops-user` and `--ops-password` to update the password for the `Administrator@vsphere.local` account in the VCH.

```bash
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --ops-user Administrator@vsphere.local
 --ops-password new_admin_password
```

You can also use the `vic-machine configure --ops-user` and `--ops-password` options to configure an operations user on a VCH that was not initially deployed with that option. Similarly, you can use `--ops-user` and `--ops-password` to change the operations user account on a VCH that was deployed with an operations user account, or to update the password for a previously specified operations user account. If you are specifying a new user account for `--ops-user`, you can also specify `--ops-grant-perms`, to automatically grant the required permissions to the operations user account.

```bash
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --ops-user new_operations_user_account
 --ops-password password
 --ops-grant-perms
```

For more information about the operations user, see Create the Operations User Account and Configure the Operations User.

**Update vCenter Server Certificates**
If the vCenter Server certificate changes, you must update any VCHs running on that vCenter Server instance, otherwise they will no longer function.

To update the certificate, provide the new certificate thumbprint to the VCH in the `--thumbprint` option. For information about how to obtain the vCenter Server certificate thumbprint, see [Obtain vSphere Certificate Thumbprints](#).

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --id vch_id
 --thumbprint new_certificate_thumbprint
```

## Add or Update Registry Server Certificates

If a VCH requires access to a new vSphere Integrated Containers Registry instance, or to another private registry, you can add new registry CA certificates by using the `vic-machine configure --registry-ca` option. You also use the `vic-machine configure --registry-ca` option if the certificate for an existing registry changes.

The `vic-machine configure --registry-ca` option functions in the same way as the equivalent `vic-machine create --registry-ca` option. For information about the `vic-machine create --registry-ca` option, see [Connect Virtual Container Hosts to Registries](#).

This example updates the certificate for a registry that this VCH already uses.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --registry-ca path_to_new_ca_cert_for_existing_registry
```

If you are adding registry certificates to a VCH that already has one or more registry certificates, you must also specify each existing registry certificate in a separate instance of `--registry-ca`. This is because the `--registry-ca` option replaces certificates instead of just adding them. This example passes the CA certificate for a new registry to a VCH and specifies the existing certificate for a registry that this VCH already uses.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
```
NOTE: Unlike `vic-machine create`, the `vic-machine configure` command does not provide an `--insecure-registry` option.

**Update Security Configuration**

You can configure the security settings of a VCH by using the different TLS options of the `vic-machine configure` command.

- To configure TLS authentication with automatically generated certificates on a VCH that currently implements no TLS authentication, or to regenerate automatically generated certificates, use the `vic-machine configure --tls-cname` option.
- To configure the path to an existing `ca.pem` file for the custom CA that you use to sign client certificates. Include the filename in the path. You can specify `--tls-ca` multiple times.
- To configure TLS authentication with custom certificates on a VCH that currently implements no TLS authentication, or that uses automatically generated certificates, or to replace existing custom certificates, use the `vic-machine configure --tls-server-cert` and `--tls-server-key` options.
- To disable verification of client certificates, use the `vic-machine configure --no-tlsverify` option.
- To change the location in which to search for and store certificates, use the `vic-machine configure --tls-cert-path` option.

The `vic-machine configure` TLS options function in the same way as the equivalent `vic-machine create` options. For information about the `vic-machine create` security options, see [Virtual Container Hosts Security](#).

This example sets the `vic-machine configure --tls-cname` option to implement TLS authentication with automatically generated server and client certificates. Before the configuration, the VCH either has no authentication or uses automatically generated certificates that you want to regenerate. The `--tls-cert-path` option specifies the folder in which to store the generated certificate.

```
$ vic-machine-operating_system configure
 - --target vcenter_server_address
 - --user Administrator@vsphere.local
 - --password password
 - --thumbprint certificate_thumbprint
 - --id vch_id
 - --tls-cname *.example.com
 - --tls-cert-path path_to_cert_folder
```

This example uses the `vic-machine configure --tls-cname` and the `--tls-ca` options to implement options for the custom CA that you use to sign client certificates. You must specify the `--tls-cname` option with the `--tls-ca` option when there is no static IP defined for the client network.

```
$ vic-machine-i>operating_system configure
```
This example uses the `vic-machine configure --tls-server-cert` and `--tls-server-key` options to implement TLS authentication with custom certificates. Before the configuration, the VCH either has no TLS authentication, or it uses automatically generated certificates, or it uses custom certificates that require replacement.

```bash
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --tls-server-cert path_to_cert/certificate_name.pem
 --tls-server-key path_to_key/key_name.pem
```

This example sets `--no-tlsverify` to disable the verification of client certificates on a VCH that implements client and server authentication.

```bash
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --no-tlsverify
```

**Update Affinity Group Settings**

After the deployment of a VCH, you can instruct vSphere Integrated Containers to automatically create a DRS VM group in vSphere for the VCH endpoint VM and its container VMs. If you use this option to reconfigure an existing VCH, you can use the resulting VM group in DRS VM-Host affinity rules, to restrict the set of hosts on which the VCH endpoint VM and its container VMs can run.

The `vic-machine configure --affinity-vm-group` option functions in the same way as the equivalent `vic-machine create` option. For information about the `vic-machine create --affinity-vm-group` option, see [Virtual Container Host Compute Capacity](#).

To create a VM group for an existing VCH that was not deployed with this option, use the `vic-machine create --affinity-vm-group` option with no arguments.
To remove a VCH that was deployed with the `vic-machine create affinity-vm-group` from its VM group, specify `false` as the argument for the `vic-machine configure affinity-vm-group` option.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --affinity-vm-group=false
```

When you specify `--affinity-vm-group=false`, vSphere Integrated Containers deletes the automatically created VM group from vSphere.

**Set or Update Storage Quotas**

If you deployed a VCH with a storage quota, that limits the amount of space that a VCH can consume in the image store, you can modify the quota after deployment. You can also set a storage quota if you did not set one when you deployed the VCH.

The `vic-machine configure --storage-quota` option functions in the same way as the equivalent `vic-machine create` option. For information about the `vic-machine create --storage-quota` option, see Storage Quota in Specify the Image Datastore.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --storage-quota new_limit
```

To remove an existing storage quota from a VCH, so that the VCH can consume an unlimited amount of storage, set `--storage-quota 0`.
Set or Update Container VM Limit

If you deployed a VCH with a limit on the number of container VMs that it can host, you can modify the limit after deployment. You can also set a limit on the number of container VMs if you did not set one when you deployed the VCH.

If you set a new limit on a VCH that is lower than the number of container VMs that already exist on the VCH, all existing container VMs continue to run. For example, if a VCH hosts 60 container VMs and you set a new limit of 50, all 60 container VMs continue to run. However, attempts to deploy additional container VMs fail until you delete enough container VMs to bring the total to below the new limit.

NOTE: This option is available in vSphere Integrated Containers 1.5.2 and later.

The `vic-machine configure --containers` option functions in the same way as the equivalent `vic-machine create` option. For information about the `vic-machine create --containers` option, see Container VM Limit in General Virtual Container Host Settings.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --containers new_limit
```

To remove an existing container VM limit from a VCH, so that the VCH can host an unlimited number of VMs, set `--containers 0`.

Add Volume Stores

You can add volume stores to VCHs by using the `vic-machine configure --volume-store` option. You can add volume stores backed by vSphere datastores or by NFSv3 shares.

The `vic-machine configure --volume-store` option functions in the same way as the equivalent `vic-machine create --volume-store` option. For information about the `vic-machine create --volume-store` option, see Specify Volume Stores.

If you are adding volume stores to a VCH that already has one or more volume stores, you must specify each existing volume store in a separate instance of `--volume-store`.

Before you add an NFS volume store to a VCH, you can test that the NFS share point is configured correctly so that containers can access it by mounting the NFS share point directly in the VCH endpoint VM. For information about how to perform this test, see Install Packages in the Virtual Container Host Endpoint VM and Mount an NFS Share Point in the VCH Endpoint VM.

This example adds a new NFS volume store to a VCH. The VCH already has an existing volume store with the label `default`, that is backed by a vSphere datastore.
$ vic-machine-operating-system configure
  --target vcenter_server_address
  --user Administrator@vsphere.local
  --password password
  --thumbprint certificate_thumbprint
  --id vch_id
  --volume-store datastore_name/datastore_path:default
  --volume-store nfs://nfs_server/path_to_share_point:nfs_volume_store_label

**NOTE:** The current version of vSphere Integrated Containers does not allow you to remove volume stores from a VCH.

### Add and Reset DNS Servers

If you deployed the VCH with a static IP address, you can add DNS servers or reset them to the default by using the `vic-machine configure --dns-server` option.

The `vic-machine configure --dns-server` option functions in the same way as the equivalent `vic-machine create --dns-server` option. For information about the `vic-machine create --dns-server` option, see [DNS Server](#) in Configure the Public Network.

If you are adding DNS servers to a VCH that already includes one or more DNS servers, you must also specify each existing DNS server in a separate instance of `--dns-server`. This example adds a new DNS server, `dns_server_2`, to a VCH that already uses `dns_server_1`.

```
$ vic-machine-operating-system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --dns-server dns_server_1
 --dns-server dns_server_2
```

To reset the DNS servers on a VCH to the default, set the `vic-machine configure --dns-server` option to "".

```
$ vic-machine-operating-system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --dns-server ""
```
NOTE: The `vic-machine configure` command does not include options to set a static IP address on a VCH that uses DHCP.

**Configure Container Network Settings**

If containers that run in a VCH require a dedicated network for external communication, you can add one or more container networks to the VCH by using the `vic-machine configure --container-network` options. You can specify `--container-network` multiple times to add multiple container networks.

The `vic-machine configure --container-network` options function in the same way as the equivalent `vic-machine create` options. For information about the `vic-machine create` container network options, see Configure Container Networks.

This example adds a new container network to a VCH. It designates a port group named `vic-containers` for use by container VMs, gives the container network the name `vic-container-network` for use by Docker, specifies the gateway, two DNS servers, and a range of IP addresses on the container network for container VMs to use.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --container-network vic-containers:vic-container-network
 --container-network-gateway vic-containers:gateway_ip_address/24
 --container-network-ip-range vic-containers:192.168.100.0/24
 --container-network-dns vic-containers:dn1_ip_address
 --container-network-dns vic-containers:dn2_ip_address
```

If you are adding container networks to a VCH that already includes one or more container networks, you must also specify each existing container network in separate instances of the `--container-network` options. This example adds a new DHCP container network named `vic-containers-2` to the VCH from the example above.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --container-network vic-containers:vic-container-network
 --container-network-gateway vic-containers:gateway_ip_address/24
 --container-network-ip-range vic-containers:192.168.100.0/24
 --container-network-dns vic-containers:dn1_ip_address
 --container-network-dns vic-containers:dn2_ip_address
 --container-network vic-containers-2:vic-container-network-2
```
You can also configure the trust level of the container network firewall by setting the \texttt{--container-network-firewall} option. This example opens the firewall for outbound connections on the two container networks from the preceding examples.

\begin{verbatim}
$ vic-machine-operating_system configure
   --target vcenter_server_address
   --user Administrator@vsphere.local
   --password password
   --thumbprint certificate_thumbprint
   --id vch_id
   --container-network vic-containers:vic-container-network
   --container-network-gateway vic-containers:gateway_ip_address/24
   --container-network-ip-range vic-containers:192.168.100.0/24
   --container-network-dns vic-containers:dns1_ip_address
   --container-network-dns vic-containers:dns2_ip_address
   --container-network-firewall vic-containers:outbound
   --container-network vic-containers-2:vic-container-network-2
   --container-network-firewall vic-containers-2:outbound
\end{verbatim}

For information about the trust levels that you can set, see \texttt{--container-network-firewall} in Configure Container Networks.

You cannot modify or delete an existing container network on a VCH.

**Add, Configure, or Remove Proxy Servers**

If access to the Internet or to private registry servers changes to pass through a proxy server, you configure a VCH to use the new proxy server by using the \texttt{vic-machine configure --https-proxy} and \texttt{--http-proxy} options. You also use the \texttt{vic-machine configure --https-proxy} and \texttt{--http-proxy} options if an existing proxy server changes.

The \texttt{vic-machine configure --https-proxy} and \texttt{--http-proxy} options function in the same way as the equivalent \texttt{vic-machine create} options. For information about the \texttt{vic-machine create --https-proxy} and \texttt{--http-proxy} options, see Configure VCHs to Use Proxy Servers.

This example configures a VCH to use a new HTTPS proxy server.

\begin{verbatim}
$ vic-machine-operating_system configure
   --target vcenter_server_address
   --user Administrator@vsphere.local
   --password password
   --thumbprint certificate_thumbprint
   --id vch_id
   --https-proxy https://new_proxy_server_address:port
\end{verbatim}

To remove a proxy server from a VCH, set the \texttt{vic-machine configure --https-proxy} or \texttt{--http-proxy} options to "".
Configure Debug Mode

To enable or disable debug mode on a VCH, you use the `vic-machine configure --debug` option. You can also use `vic-machine configure --debug` to increase or decrease the level of debugging on a VCH that is already running in debug mode.

The `vic-machine configure --debug` option functions in the same way as the equivalent `vic-machine create --debug` option. For information about the `vic-machine create --debug` option, see Debug in the topic on configuring general VCH settings. By default, `vic-machine create` deploys VCHs with debugging level 0.

This example increases the level of debugging to level 3, either on a VCH that is running with a lower level of debugging, or on a VCH that is not running in debug mode.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --https-proxy ""
```

This example sets the `--debug` option to 0, to disable debug mode on a VCH.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --debug 0
```

Configure CPU and Memory Allocations

If a VCH requires more resources, or if it consumes too many resources, you can configure CPU and memory allocations on the VCH resource pool by using the different `vic-machine configure --memory` and `--cpu` options.
The `vic-machine configure` options for memory and CPU allocations function in the same way as the equivalent `vic-machine create` options. For information about the `vic-machine create` memory and CPU reservation and shares options, see Virtual Container Host Compute Capacity.

**NOTE:** Clusters that do not implement DRS do not support resource pools. If you deployed a VCH to a cluster on which DRS is disabled, the VCH is in a VM folder, rather than in a resource pool. Consequently, if you specify any `vic-machine configure` options that apply to the memory or CPU configuration of the VCH resource pool, these options are ignored, with a warning in the configuration log.

This example configures a VCH to impose memory and CPU reservations, limits, and shares.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --memory 1024
 --memory-reservation 1024
 --memory-shares low
 --cpu 1024
 --cpu-reservation 1024
 --cpu-shares low
```

**NOTE:** If you set limits on memory and CPU usage that are too low, the `vic-machine configure` operation might fail because it is unable to restart the VCH.

This example removes all limitations on memory and CPU use from a VCH.

```
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --memory 0
 --memory-reservation 0
 --memory-shares normal
 --cpu 0
 --cpu-reservation 0
 --cpu-shares normal
```

**Reset Upgrade or Configuration Progress**
If an attempt to upgrade or configure a VCH was interrupted before it could complete successfully, any further attempts to run `vic-machine upgrade` or `vic-machine configure` fail with the error another upgrade/configure operation is in progress. This happens because `vic-machine upgrade` and `vic-machine configure` set an `UpdateInProgress` flag on the VCH endpoint VM that prevents other operations on that VCH while the upgrade or configuration operation is ongoing. If an upgrade or configuration operation is interrupted before it completes, this flag persists on the VCH indefinitely.

To clear the flag so that you can attempt further `vic-machine upgrade` or `vic-machine configure` operations, run `vic-machine configure` with the `--reset-progress` option.

```bash
$ vic-machine-operating_system configure
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --reset-progress
```

**IMPORTANT**: Before you run `vic-machine configure --reset-progress`, check in Recent Tasks in the vSphere Client that there are indeed no update or configuration operations in progress on the VCH endpoint VM.

### Roll Back to Previous Configuration

If the VCH configuration changes and you want to revert the changes, you can roll back the configuration to the previous settings by using the `--rollback` option.

Before making changes to the configuration, `vic-machine configure` takes a snapshot of the existing VCH configuration. The configuration process deletes older snapshots of any previous settings. The `--rollback` option reverts the configuration of the VCH to the snapshot of the previous settings. Because `vic-machine configure` only retains one snapshot, you can only use `--rollback` to revert the VCH to the configuration that immediately precedes the most recent change.

To revert the configuration to the previous settings, run `vic-machine configure` with the `--rollback` option.

```bash
$ vic-machine-operating_system configure --rollback
```

**Note**: If you attempt to rollback a VCH that has been upgraded with `vic-machine upgrade` and has undergone a configuration change with `vic-machine configure`, you must run `vic-machine configure --rollback` to roll back the configuration to the previous settings before running `vic-machine upgrade --rollback` to roll the VCH back to its previous version.
Debug Running Virtual Container Hosts

By default, all shell access to the virtual container host (VCH) endpoint VM is disabled. Login shells for all users are set to `/bin/false`. The `vic-machine` utility provides a `debug` command that allows you to enable shell access to the VCH endpoint VM, either by using the VM console or via SSH.

In addition to the Common `vic-machine` Options, `vic-machine debug` provides the `--rootpw`, `--enable-ssh` and `--authorized-key` options, which are described in the following sections.

- Enable Shell Access to the VCH Endpoint VM
- Authorize SSH Access to the VCH Endpoint VM

**NOTE:** Do not confuse the `vic-machine debug` command with the `vic-machine create --debug` or `vic-machine configure --debug` options. The `vic-machine debug` command allows you to log into and debug a VCH endpoint VM that you have already deployed. The `vic-machine create --debug` option deploys a new VCH that has increased levels of logging and other modifications, to allow you to debug the environment in which you deploy VCHs. For information about the `vic-machine create --debug` option, see Debug in the topic on configuring general VCH settings.
Enable shell access to the VCH Endpoint VM

You can use the `vic-machine debug` command to enable shell access to a virtual container host (VCH) endpoint VM by setting a root password on the VM. Setting a root password enables access to the VCH endpoint VM via the VM console only. If you require SSH access to the VCH endpoint VM, rather than just shell access, see Authorize SSH Access to the VCH Endpoint VM.

**IMPORTANT:** Any changes that you make to a VCH by using `vic-machine debug` are non-persistent and are discarded if the VCH endpoint VM reboots.

In addition to the Common `vic-machine` Options, `vic-machine debug` provides the `--rootpw`, `--enable-ssh` and `--authorized-key` options.

- You must specify the vSphere target and its credentials, either in the `--target` option or separately in the `--user` and `--password` options.

  The credentials that you provide must have the following privilege on the endpoint VM:

  ```
 Virtual machine.Guest Operations.Guest Operation Program Execution
  ```

- You must specify the ID or name of the VCH to debug.

- You might need to provide the thumbprint of the vCenter Server or ESXi host certificate. Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

- You enable shell access by specifying a password for the root user on the VCH endpoint VM in the `--rootpw` option. Setting a password on the VCH allows you to access the VCH by using the VM console. If you also set the `--enable-ssh` option, you can use this password to connect to the VCH by using SSH. Wrap the password in quotes if it includes shell characters such as `$`, `!`, or `%.

  ```
 --rootpw 'new_p@ssword'
  ```

- When you use the password to log in to a VCH, you see the message that the password will expire in 0 days. To obtain a longer expiration period, use the Linux `passwd` command in the endpoint VM to set a new password. If the password expires, the VCH does not revert to the default security configuration from before you ran `vic-machine debug`. If you attempt to log in using an interactive password via the terminal or SSH, you see a prompt to change the password. If you are using an SSH key, you cannot log in until you either change the password or run `vic-machine debug` again.

**Example**

This example sets a password to allow shell access to the VCH.

```
$ vic-machine-operating-system debug
 --target vcenter_server_or_esxi_host_address
 --user vcenter_server_or_esxi_host_username
```
The output of the `vic-machine debug` command includes confirmation that SSH access is enabled:

```bash
Configuring VCH for debug
[...]
SSH to appliance:
ssh root@vch_address
[...]
Completed successfully
```
Authorize SSH Access to the VCH Endpoint VM

You can use the `vic-machine debug` command to enable shell access to a virtual container host (VCH) endpoint VM by setting a root password on the VM. Setting a root password enables access to the VCH endpoint VM via the VM console. If you authorize SSH access to the VCH endpoint VM, you can edit system configuration files that you cannot edit by running `vic-machine` commands. You can also use `debug` to authorize SSH access to the VCH endpoint VM. You can optionally upload a key file for public key authentication when accessing the endpoint VM by using SSH.

**IMPORTANT**: Any changes that you make to a VCH by using `vic-machine debug` are non-persistent and are discarded if the VCH endpoint VM reboots.

- You must specify the vSphere target and its credentials, either in the `--target` option or separately in the `--user` and `--password` options.

  The credentials that you provide must have the following privilege on the endpoint VM:

  ```
 Virtual machine.Guest Operations.Guest Operation Program Execution
  ```

- You must specify the ID or name of the VCH to debug.
- You might need to provide the thumbprint of the vCenter Server or ESXi host certificate. Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.
- To enable SSH access, you must enable shell access by specifying the `--rootpw` option. Wrap the password in quotes if it includes shell characters such as `$`, `!`, or `%.
- You authorize SSH access by specifying `--enable-ssh`. The `sshd` service runs until the VCH endpoint VM reboots. The `--enable-ssh` option takes no arguments.
- If you have already enabled SSH access but the password that you set has expired, and you then rerun `--enable-ssh` without specifying `--rootpw`, the password expiry is set to 1 day in the future and the password is preserved.
- Optionally, you can specify the `--authorized-key` option to upload a public key file to `/root/.ssh/authorized_keys` folder in the endpoint VM. Include the name of the `*.pub` file in the path.

  ```
 --authorized-key path_to_public_key_file/key_file.pub
  ```

**Example**

This example authorizes SSH access and provides a public key file.

```
$ vic-machine-operating_system debug
 --target vcenter_server_or_esxi_host_address
 --user vcenter_server_or_esxi_host_username
 --password vcenter_server_or_esxi_host_password
 --id vch_id
```
--thumbprint certificate_thumbprint
--enable-ssh
--rootpw 'new_password'
--authorized-key path_to_public_key_file/key_file.pub

Output

The output of the vic-machine debug command includes confirmation that SSH access is enabled:

```bash
Configuring VCH for debug
[...]
SSH to appliance:
ssh root@vch_address
[...]
Completed successfully
```
Delete Virtual Container Hosts

You delete virtual container hosts (VCHs) by using the `vic-machine delete` command.

You can also delete VCHs by using the vSphere Integrated Containers plug-in for the HTML5 vSphere Client. For information about using the plug-in, see View vSphere Integrated Containers Information in the HTML5 vSphere Client.

The `vic-machine delete` includes one option in addition to the Common `vic-machine` Options, **--force**.

- You must specify the user name and optionally the password, either in the **--target** option or separately in the **--user** and **--password** options.
- If the VCH has a name other than the default name, `virtual-container-host`, you must specify the **--name** or **--id** option.
- If multiple compute resources exist in the datacenter, you must specify the **--compute-resource** or **--id** option.
- Specifying the **--force** option forces `vic-machine delete` to ignore warnings and continue with the deletion of a VCH. Any running container VMs and any volume stores associated with the VCH are deleted. Errors such as an incorrect compute resource still cause the deletion to fail.
  - If you do not specify **--force** and the VCH contains running container VMs, the deletion fails with a warning.
  - If you do not specify **--force** and the VCH has volume stores, the deletion of the VCH succeeds without deleting the volume stores. The list of volume stores appears in the `vic-machine delete` success message for reference and optional manual removal.
- If your vSphere environment uses untrusted, self-signed certificates, you must specify the thumbprint of the vCenter Server instance or ESXi host in the **--thumbprint** option. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints. Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

**NOTES:**

When you delete a VCH that uses TLS authentication with trusted Certificate Authority (CA) certificates, `vic-machine delete` does not delete the certificates or the certificate folder, even if you specify the **--force** option. Because `vic-machine delete` does not delete the certificates, you can delete VCHs and create new ones that reuse the same certificates. This is useful if you have already distributed the client certificates for VCHs that you need to recreate.

The `vic-machine delete` command does not modify the firewall on ESXi hosts. If you do not need to deploy or run further VCHs on the ESXi host or cluster after you have deleted VCHs, run `vic-machine update firewall --deny` to close port 2377 on the host or hosts.

If you deployed the VCH with the `vic-machine create --affinity-vm-group` option, `vic-machine delete` removes the VM affinity group that was created during deployment.

**Examples**

The following example includes the options required to remove a VCH from a simple vCenter Server environment.
If the delete operation fails with a message about container VMs that are powered on, run `docker stop` on the containers and run `vic-machine delete` again. Alternatively, run `vic-machine delete` with the `--force` option.

**CAUTION** Running `vic-machine delete` with the `--force` option removes all running container VMs that the VCH manages, as well as any associated volumes and volume stores. It is not recommended to use the `--force` option to remove running containers.

If your vSphere environment uses untrusted, self-signed certificates, running `vic-machine delete` with the `--force` option allows you to omit the `--thumbprint` option.

**CAUTION:** Using `--force` in this way exposes VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using `--force` also bypasses other checks, and can result in data loss.
Access the VCH Administration Portal

Each virtual container host (VCH) has a Web-based administration portal, called VCH Administration portal. The VCH Administration portal provides status information about the VCH and access to the VCH logs.

The vSphere Integrated Containers plug-in for the vSphere Client provides the link to the VCH Administration portal for each VCH instance. You can also see the URL for the VCH Administration portal in the output of the `vic-machine create` or `vic-machine inspect` commands.

Prerequisites

- You deployed a VCH and at least one container VM.
- The vSphere Integrated Containers plug-in for the HTML5 vSphere Client plug-in is available for vSphere 6.5 and 6.7.
- The vSphere Integrated Containers plug-in for the Flex-based vSphere Web Client is available for vSphere 6.0.

Procedure

1. Log in to the vSphere Client.
2. Navigate to your VCHs.
   - In the HTML5 vSphere Client for vSphere 6.5 and 6.7, you can access the VCH Administration portal links in two ways:
     - Go to Home > vSphere Integrated Containers > vSphere Integrated Containers > Virtual Container Hosts and click the link to the VCH Admin portal.
     - Go to Hosts and Clusters, select a VCH endpoint VM, and click the link to the VCH Admin portal in the Summary tab.
   - In the Flex-based vSphere Web Client for vSphere 6.0, go to Hosts and Clusters, select a VCH endpoint VM, and click the link to the VCH Admin portal in the Summary tab.
3. Use vSphere administrator credentials to log in to the VCH Admin portal.

   NOTE: If you used `vic-machine` to deploy the VCH and you enabled verification of client certificates, or if you specified a static IP address on the client network, you can use the generated *.pfx certificate to authenticate with the VCH Admin portal. For information about using the *.pfx certificate to log into VCH admin, see Browser-Based Certificate Login and Command Line Certificate Login.

Result

After you log in, the VCH Admin portal displays information about the VCH and the environment in which is running:

- Status information about the VCH, registry and Internet connections, firewall configuration, and license. For information about these statuses and how to remedy error states, see the VCH Status Reference.
The address of the Docker endpoint.

The system time of the VCH. This is useful to know because clock skews between VCHs and client systems can cause TLS authentication to fail. For information about clock skews, see Connections Fail with Certificate or Platform Services Controller Token Errors.

The remaining capacity of the datastore that you designated as the image store. If the VCH is unable to connect to vSphere, the datastore information is not displayed.

Live logs and log bundles for different aspects of the VCH. For information about the logs, see Access vSphere Integrated Containers Engine Log Bundles.

## Troubleshooting

If you see a certificate error when you attempt to log in to the VCH Administration Portal, see Browser Rejects Certificates with ERR_CERT_INVALID Error.
Browser-Based Certificate Login

If you deployed the VCH with client and server authentication by using `--tls-cname` or by specifying a static IP address on the client network, you can use browser-based certificate authentication to access the VCH Admin Portal. In this way, you do not need to provide the vSphere credentials each time that you log in to VCH Admin.

Prerequisites

- You deployed a VCH with `--tls-cname` or a static IP address for the VCH on the client network.
- Use Firefox. Currently, this feature is only supported with Firefox.
- Locate the file named `cert.pfx` on the system on which you ran `vic-machine create`. The `cert.pfx` is located in either of the following locations:
  - In the folder with the same name as the VCH, in the directory from which you ran `vic-machine create`.
  - In a folder that you specified in the `vic-machine create --tls-cert-path` option.

Procedure

1. In Firefox, select `Tools > Options` and select `Advanced`.
2. Click `View Certificates`.
3. Click `Import`.
4. Browse to the `cert.pfx` file and click `Open`.
5. Click `OK`.
   - Do not enter a password when prompted.

Result

You see a message stating that the certificate was successfully installed. With the VCH certificate installed in your browser, you can navigate to `https://vch_address:2378/` or to one of the log pages without having to enter the vSphere credentials.
Command Line Certificate Login

You can use certificate-based authentication with tools such as `curl` or `wget` to access the VCH Admin log server.

With TLS Client Authentication

- If you deployed the VCH with client authentication by using `--tls-cname` or by specifying a static IP address on the client network, you can point `curl` to the `cert.pem` and `key.pem` files for the VCH. The following example authenticates connections to the `port-layer.log` file.

  ```bash
 curl https://vch_address:2378/logs/port-layer.log
 --key ./$cert_folder/key.pem
 --certificate ./$cert_folder/cert.pem
  ```

  **NOTE:** If your certificates are self-signed, you might also need to specify the `curl -k` flag.

  In the example above, `cert_folder` is either of the following locations:
  - The folder with the same name as the VCH, in the directory from which you ran `vic-machine create`.
  - A folder that you specified in the `vic-machine create --tls-cert-path` option.

Without Client Authentication

If you deployed the VCH without client authentication by using either of `--no-tls` or `--no-tlsverify`, you can use `curl` to access the logs but you must first authenticate connections to VCH Admin by using the vSphere user name and password.

1. Log in to VCH Admin to gather an authentication cookie for subsequent access:

   ```bash
 curl -sk https://vch_address:2378/authentication
 -XPOST -F username=vsphere_username
 -F password=vsphere_password
 -D cookies_file
   ```

2. Use the cookie from Step 1 in a `curl` command to access the logs.

   ```bash
 curl -sk https://vch_address:2378/logs/port-layer.log
 -b cookies_file
   ```
VCH Admin Status Reference

The Web-based administration portal for virtual container hosts (VCHs), VCH Admin, presents status information about a VCH.

If the vSphere environment in which you are deploying a VCH does not meet the requirements, the deployment does not succeed. However, a successfully deployed VCH can stop functioning if the vSphere environment changes after the deployment. If environment changes adversely affect the VCH, the status of the affected component changes from green to yellow.

Virtual Container Host (VCH)

VCH Admin checks the status of the processes that the VCH runs:

- The port layer server, that presents an API of low-level container primitive operations, and implements those container operations via the vSphere APIs.
- VCH Admin server, that runs the VCH Admin portal.
- The vSphere Integrated Containers Engine initialization service and watchdog service for the other components.
- The Docker Engine server, that exposes the Docker API and semantics, translating those composite operations into port layer primitives.

Error

- The VCH status is yellow.
- The VCH status is yellow and an error message informs you that the VCH cannot connect to vSphere.

Cause

- One or more of the VCH processes is not running correctly, or the VCH is unable to connect to vSphere.
- The management network connection is down and the VCH endpoint VM cannot connect to vSphere.

Solution

1. (Optional) If you see the error that the VCH is unable to connect to vSphere, check the VCH management network.
2. In the VCH Admin portal for the VCH, click the link for the VCH Admin Server log.
3. Search the log for references to the different VCH processes.
   The different processes are identified in the log by the following names:
   - port-layer-server
   - vicadmin
   - vic-init
   - docker-engine-server
4. Identify the process or processes that are not running correctly and attempt to remediate the issues as required.
Registry and Internet Connectivity

VCH Admin checks connectivity on the public network by attempting to connect from the VCH to docker.io and google.com. VCH Admin only checks the public network connection. It does not check other networks, for example the bridge, management, client, or container networks.

Error

The Registry and Internet Connectivity status is yellow.

Cause

The public network connection is down.

Solution

Check the VCH Admin Server log for references to network issues. Use the vSphere Web Client to remediate the management network issues as required.

Firewall

VCH Admin checks that the firewall is correctly configured on an ESXi host on which the VCH is running. If the VCH is running in a cluster, VCH Admin checks the firewall configuration on all of the hosts in the cluster.

Error

- The Firewall status is unavailable.
- The Firewall status is yellow and shows the error [Firewall must permit 2377/tcp outbound to use VIC.]

Cause

- The management network connection is down and the VCH endpoint VM cannot connect to vSphere.
- The firewall on the ESXi host on which the VCH is running no longer allows outbound connections on port 2377.
  - The firewall was switched off when the VCH was deployed. The firewall has been switched on since the deployment of the VCH.
  - A firewall ruleset was applied manually to the ESXi host to allow outbound connections on port 2377. The ESXi host has been rebooted since the deployment of the VCH. Firewall rulesets are not retained when an ESXi host reboots.

Solution

- If the Firewall status is unavailable:
  - Check the VCH Admin Server log for references to network issues.
  - Use the vSphere Web Client to remediate the management network issues as required.
License

VCH Admin checks that the ESXi hosts on which you deploy VCHs have the appropriate licenses.

Error

- The License status is yellow and shows the error License does not meet minimum requirements to use VIC.
- The License status is unavailable.

Cause

- The license for the ESXi host or for one or more of the hosts in a vCenter Server cluster on which the VCH is deployed has been removed, downgraded, or has expired since the deployment of the VCH.
- The management network is down, or the VCH endpoint VM is unable to connect to vSphere.

Solution

- If the license does not meet the requirements:
  - If the VCH is running on an ESXi host that is not managed by vCenter Server, replace the ESXi host license with a valid vSphere Enterprise license.
  - If the VCH is running on a standalone ESXi host in vCenter Server, replace the ESXi host license with a valid vSphere Enterprise Plus or vSphere Remote Office Branch Office (ROBO) Advanced license.
  - If the VCH is running in a vCenter Server cluster, check that all of the hosts in the cluster have a valid vSphere Enterprise Plus or vSphere ROBO Advanced license, and replace any licenses that have been removed, downgraded, or have expired.
- If the License status is unavailable:
  - Check the VCH Admin Server log for references to network issues.
  - Use the vSphere Web Client to remediate the management network issues as required.
Upgrading vSphere Integrated Containers

You can only upgrade vSphere Integrated Containers from version 1.3.x or 1.4.x to 1.5.x, or from 1.5.x to a later 1.5.y update release. You cannot upgrade any release earlier than 1.3.x to 1.5.x.

You upgrade vSphere Integrated Containers in three stages:

- Upgrade the vSphere Integrated Containers Appliance
- Upgrade Virtual Container Hosts
- Upgrade the vSphere Client Plug-In

Upgrade the vSphere Integrated Containers Appliance

Upgrading the appliance upgrades both vSphere Integrated Containers Registry and vSphere Integrated Containers Management portal. By default, upgrading the appliance also upgrades the vSphere Integrated Containers plug-in for the vSphere Client.

- For information about how to prepare for upgrade, see Tasks to Perform Before Upgrading the vSphere Integrated Containers Appliance
- For information about upgrading the appliance, see Upgrade the vSphere Integrated Containers Appliance.

Upgrade Virtual Container Hosts

After you have upgraded the appliance, you can download the new version of the vSphere Integrated Containers Engine bundle. Then, you can use vic-machine to upgrade your virtual container hosts (VCHs) individually.

For information about upgrading VCHs, see Upgrade Virtual Container Hosts.

Upgrade the vSphere Client Plug-In

By default the vSphere Integrated Containers plug-in for the vSphere Client is upgraded automatically when you upgrade the appliance. If you choose not to upgrade the plug-in at the same time as the appliance, you can do so later by reinitializing the appliance.

For information about upgrading the vSphere Client plug-in, see Reinitialize the vSphere Integrated Containers Appliance.
Tasks to Perform Before Upgrading the vSphere Integrated Containers Appliance

To ensure a successful upgrade, you must perform several tasks before upgrading the vSphere Integrated Containers appliance.

- Make sure that the previous version of the vSphere Integrated Containers appliance allows SSH connections.
  1. Select the appliance VM in the Hosts and Clusters view of the vSphere client
  2. Select Edit Settings > vApp Options.
  3. Expand Appliance Security and make sure that Permit Root Login is set to True.
  4. If Permit Root Login is set to False, power off the appliance VM, and edit the settings to enable it.

- Ensure that all vCenter Server instances and ESXi hosts in the environment in which you are deploying the appliance have network time protocol (NTP) running. Running NTP prevents problems arising from clock skew between the vSphere Integrated Containers appliance, virtual container hosts, and the vSphere infrastructure.

- Back up the appliance by using your usual backup tools. For information about backing up the appliance, see Back Up and Restore the vSphere Integrated Containers Appliance.

   IMPORTANT: If you use snapshots to back up the appliance, you must clone the disk snapshots to a different location and remove the snapshots from the appliance VM. Upgrading the appliance requires you to remove disks from the appliance VM, and you cannot remove disks if the VM has snapshots.
Upgrade the vSphere Integrated Containers Appliance

If you have a 1.3.x or 1.4.x version of the vSphere Integrated Containers appliance, you can upgrade your existing installation to 1.5.x. You can also upgrade a 1.5.x release to a later 1.5.y update release.

Upgrading the vSphere Integrated Containers appliance requires you to deploy an instance of the new version of the appliance, use SSH to log in to the new appliance, and run an upgrade script. The script copies the relevant disk files from the old appliance to the new appliance. All configurations that you made in vSphere Integrated Containers Management Portal in the previous installation transfer to the upgraded appliance. If you configured the older version of the appliance with a static IP address, you can configure the new appliance to use the same IP address as before.

Because disk files are copied rather than moved, the old appliance is not affected by the upgrade process. You can keep it as a backup. This is the recommended procedure for performing upgrades.

You can also perform the upgrade by manually copying disks from the old appliance to the new appliance rather than by copying them. For information about manual upgrade, see Upgrade the vSphere Integrated Containers Appliance by Manually Copying Disks.

For information about the supported upgrade paths for all versions of vSphere Integrated Containers, see Upgrade Paths in the VMware Product Interoperability Matrices.

**NOTE:** You cannot upgrade between untagged, open source builds of the same release. For example, you cannot upgrade from an earlier, open source build of 1.5.0 to the official 1.5.0 release. You can only upgrade from one official release to another. Upgrading from one tagged open source build to another is possible but is not supported.

**Prerequisites**

- You have completed the pre-upgrade tasks listed in Tasks to Perform Before Upgrading the vSphere Integrated Containers Appliance.
- If you deployed the old version of the vSphere Integrated Containers appliance with a static IP address, and you want the new appliance to retain the same IP address after the upgrade, reconfigure the old appliance to use a temporary IP address before you start the upgrade procedure. For information about how to reconfigure the old appliance, see Reconfigure the vSphere Integrated Containers Appliance.
- Deploy the latest version of the vSphere Integrated Containers appliance. For information about deploying the appliance, see Deploy the vSphere Integrated Containers Appliance.
  - If you use vCenter Server 6.7 update 1 or later, you can use the HTML5 vSphere Client to deploy the appliance. If you use an older version of vCenter Server, you must use the Flex-based vSphere Web Client to deploy the appliance. You cannot deploy OVA files from versions of the HTML5 vSphere Client that pre-date vCenter Server 6.7 update 1.
  - When you deploy the new version of the appliance, you can optionally configure the network settings to use the same static IP address as you used on the old version.
  - The upgrade process copies data from the old appliance to the new appliance. Consequently, if you deployed the appliances to a cluster, the virtual disks for the two appliances must be located in the same datastore cluster.
- **IMPORTANT:** If you used custom certificates when you deployed the previous version of the appliance, you
must use the same certificates when you deploy the new version of the appliance. If you do not provide the certificate details when you deploy the new version, self-signed certificates are generated.

- Do not disable SSH access to the new appliance. You require SSH access to the appliance during the upgrade procedure.
- Deploy the new version of the appliance to the same vCenter Server instance as the one on which the previous version is running, or to a vCenter Server instance that is managed by the same Platform Services Controller.
- Power on the new version of the vSphere Integrated Containers appliance and wait for it to boot up. Booting up can take a few minutes. Go to https://vic_appliance_address:9443 and wait until the Complete VIC appliance installation panel appears.
- **IMPORTANT:** After the new appliance has booted up, do not fill in the Complete VIC appliance installation panel. This step is only applicable to new installations, not to upgrades.
- Log in to the vSphere Client for the vCenter Server instance on which the previous version is running and on which you deployed the new version.
- Do not power off the older version of the appliance.

### Procedure

1. Use SSH to connect to the new appliance as root user.

    ```bash
 $ ssh root@new_vic_appliance_address
    ```

    When prompted for the password, enter the appliance password that you specified when you deployed the new version of the appliance.

2. Navigate to the upgrade script and run it.

    ```bash
 $ cd /etc/vmware/upgrade
 $./upgrade.sh
    ```

    **NOTE:** You can bypass some or all of the following steps by specifying additional optional arguments when you run the upgrade script. For information about the arguments that you can specify, see Specify Command Line Options During Appliance Upgrade below.

    If you attempt to run the script while the appliance is still initializing and you see the following message, wait for a few more minutes, then attempt to run the script again.

    ```bash
 Appliance services not ready. Please wait until vic-appliance-load-docker-images.service has completed.
    ```

    To track the progress of the initialization, run `watch docker ps -a` and wait for the `vic-machine-server` container to start.
3. Enter the IP address or FQDN of the vCenter Server instance on which you deployed the new appliance.

4. Enter the Single Sign-On user name and password of a vSphere administrator account.
   The script requires these credentials to access the disk files of the old appliance, and to register the new version of vSphere Integrated Containers with the VMware Platform Services Controller.

5. If vCenter Server is managed by an external Platform Services Controller, enter the IP address or FQDN and the administrator domain of the Platform Services Controller.
   If vCenter Server is managed by an embedded Platform Services Controller, press Enter at both prompts without entering anything.

6. Enter `y` if the vCenter Server certificate thumbprint is legitimate.

7. Enter the root password of the new version of the appliance.

8. Provide information about the old version of the appliance.
   i. Enter the name of the datacenter that contains the old version of the appliance.
   ii. Enter the IP address of the old version of the appliance. The upgrade script does not accept FQDN addresses for the old appliance.
   iii. For the old appliance user name, enter `root`.

9. To automatically upgrade the vSphere Integrated Containers plug-in for vSphere Client, enter `y` at the prompt to \_Upgrade VIC UI Plugin\_.
   \_NOTE_: If you enter `n` to skip the plug-in upgrade, for example because you have multiple appliances of a different version, you can upgrade the plug-in later. You can see version information about the plug-in and the appliance in the Summary tab of the vSphere Integrated Containers plug-in.

10. Enter the root password for the old appliance.

11. Verify that the upgrade script has detected your upgrade path correctly.
   - If the script detects your upgrade path correctly, enter `y` to proceed with the upgrade.
   - If the upgrade script detects the upgrade path incorrectly, enter `n` to abort the upgrade and contact VMware support.

**Result**

After you see confirmation that the upgrade has completed successfully, the upgraded appliance initializes. When the upgraded appliance has initialized, you can access its appliance welcome page at http://new_appliance_address.

**What to Do Next**

- If you answered `y` at the prompt to \_Upgrade VIC UI Plugin\_, access the vSphere Integrated Containers plug-in for vSphere Client:
  1. Log out of the HTML5 vSphere Client and log back in again. You should see a banner that states \_There are plug-ins that were installed or updated\_.
     i. If you use vSphere 6.7u1 or later, click the button in the banner to refresh the vSphere Client.
     ii. On versions of vSphere that pre-date 6.7u1, log out of the HTML5 vSphere Client a second time and log back in again.
2. Click the vSphere Client logo in the top left corner.
3. Under Inventories, click vSphere Integrated Containers to access the vSphere Integrated Containers plug-in.
4. In the vSphere Integrated Containers > Summary tab, check that the plug-in is at the correct version.
   • Click Go to the vSphere Integrated Containers Management Portal in the appliance welcome page, and use vCenter Server Single Sign-On credentials to log in.
     • In the Home tab of the vSphere Integrated Containers Management Portal, check that all existing applications, containers, networks, volumes, and virtual container hosts have migrated successfully.
     • In the Administration tab, check that projects, registries, repositories, and replication configurations have migrated successfully.
• If, in the previous version, you configured vSphere Integrated Containers Registry instances as replication endpoints, upgrade the appliances that run those registry instances. Replication of images from the new registry instance to the older replication endpoint still functions, but it is recommended that you upgrade the target registry.
• Download the new vSphere Integrated Containers Engine bundle and upgrade your VCHs. For information about upgrading VCHs, see Upgrade Virtual Container Hosts.
• If you answered n at the prompt to Upgrade VIC UI Plugin, and you want to upgrade the plug-in later, see Reinitialize the vSphere Integrated Containers Appliance.

Troubleshooting

If upgrade fails, generate a log bundle and obtain the upgrade log to provide to VMware support. For information about obtaining the logs, see Access and Configure Appliance Logs.

Specify Command Line Options During Appliance Upgrade

When you run the script to upgrade the vSphere Integrated Containers appliance, you are prompted to enter information about the environment in which you are running the old and new versions of the appliance.

To bypass these prompts, you can specify command line arguments when you run the /etc/vmware/upgrade/upgrade.sh script. All arguments are optional. If you omit a required argument, the script prompts you to enter the information. These arguments also allow you to automate the upgrade of the appliance.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--target</td>
<td>Specify the address of the vCenter Server instance on which you deployed the new appliance.</td>
</tr>
<tr>
<td>--username</td>
<td>Specify the Single Sign-On user name of a vSphere administrator account.</td>
</tr>
<tr>
<td>--password</td>
<td>Specify the Single Sign-On password of a vSphere administrator account.</td>
</tr>
<tr>
<td>--fingerprint</td>
<td>Specify the IP address of vCenter Server and the thumbprint of the vCenter Server certificate, in the format --fingerprint 'vcenter_server_address: vcenter_server_thumbprint'. Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.</td>
</tr>
<tr>
<td>--dc</td>
<td>Specify the name of the datacenter that contains the old version of the appliance.</td>
</tr>
</tbody>
</table>
Skip the prompts for information about an external Platform Services Controller. Use this option if you run vCenter Server with an embedded Platform Services Controller.

If vCenter Server is managed by an external Platform Services Controller, specify the IP address of the Platform Services Controller.

If vCenter Server is managed by an external Platform Services Controller, specify the administrator domain for the Platform Services Controller.

Specify the address of the old version of the appliance.

Specify the user name for the old appliance, usually root.

Specify the password for the root user on the old appliance.

Skip the host key check for SSH access to the old appliance. Use this option if you want to use the upgrade script completely non-interactively.

Specify the version number of the old version of the appliance, in the format v1.x.y, to skip the upgrade path check. Upgrade fails if the version specified is incorrect.

Remove the old appliance after the upgrade is finished. Use this option if you do not want to keep the old appliance as a backup. This option requires you to confirm by entering y or n before proceeding.

Skip the automated disk migration. Use this option if you manually moved the disks from the old appliance to the new appliance.

Upgrade the vSphere Integrated Containers plug-in for the vSphere Client. Specify 'n' to skip plug-in upgrade. If you do not specify this option, the upgrade is performed.

* To use the --manual-disks option, follow the instructions in Upgrade the vSphere Integrated Containers Appliance by Manually Moving Disks.

NOTE: Option values that contain $ (dollar sign), ` (backquote), ' (single quote), " (double quote), and \ (backslash) are not substituted correctly. Change any input, particularly passwords, that contain these values before you run this script.

Example: Upgrade Appliance with Embedded Platform Services Controller

The following command upgrades a vSphere Integrated Containers 1.4.4 appliance. The new appliance runs in a vCenter Server instance with an embedded Platform Services Controller. The old appliance is removed when the upgrade finishes.

```
./upgrade.sh --target vcenter_server_address
--username 'Administrator@vsphere.local'
--password 'P@ssW0rd!'
--fingerprint 'vcenter_server_address
--dc oldApplianceDatacenter
--embedded-psc
--appliance-target old_appliance_address
```
Example: Upgrade Appliance with External Platform Services Controller

The following command upgrades a vSphere Integrated Containers 1.3.1 appliance. The new appliance runs in a vCenter Server instance with an external Platform Services Controller. The old appliance is not removed when the upgrade finishes.

```bash
./upgrade.sh --target vcenter_server_address
--username 'Administrator@vsphere.local'
--password 'P@ssW0rd!'
--dc oldApplianceDatacenter
--external-psc psc_address
--external-psc-domain vsphere.local
--appliance-target old_appliance_address
--appliance-username root
--appliance-password old_appliance_root_password
--appliance-version v1.3.1
```
Upgrade the vSphere Integrated Containers Appliance by Manually Copying Disks

By default, the upgrade script automatically copies the relevant disk files from the old appliance to the new appliance. As an alternative, you can perform the upgrade by manually copying disks from the old appliance to the new appliance.

**IMPORTANT:** The recommended method of upgrading the appliance is to follow the procedure in Upgrade the vSphere Integrated Containers Appliance. Only use the manual method if the fully automatic method fails.

Manually upgrading the vSphere Integrated Containers appliance requires you to copy disks from the old appliance VM to a new instance of the appliance. Because disk files are copied rather than moved, the old appliance is not affected by the upgrade process. You can keep it as a backup.

During a manual upgrade, all configurations that you made in vSphere Integrated Containers Management Portal and Registry in the previous installation transfer to the upgraded appliance. The old appliance is no longer functional after you move the disks.

**Prerequisites**

- You have completed the pre-upgrade tasks listed in Tasks to Perform Before Upgrading the vSphere Integrated Containers Appliance.
- If you deployed the old version of the vSphere Integrated Containers appliance with a static IP address, and you want the new appliance to retain the same IP address after the upgrade, reconfigure the old appliance to use a temporary IP address before you start the upgrade procedure. For information about how to reconfigure the old appliance, see Reconfigure the vSphere Integrated Containers Appliance.
- Deploy the latest version of the vSphere Integrated Containers appliance. For information about deploying the appliance, see Deploy the vSphere Integrated Containers Appliance.
  - If you use vCenter Server 6.7 update 1 or later, you can use the HTML5 vSphere Client to deploy the appliance. If you use an older version of vCenter Server, you must use the Flex-based vSphere Web Client to deploy the appliance. You cannot deploy OVA files from versions of the HTML5 vSphere Client that pre-date vCenter Server 6.7 update 1.
  - When you deploy the new version of the appliance, you can optionally configure the network settings to use the same static IP address as you used on the old version.
  - The upgrade process copies data from the old appliance to the new appliance. Consequently, if you deployed the appliances to a cluster, the virtual disks for the two appliances must be located in the same datastore cluster.
  - **IMPORTANT:** If you used custom certificates when you deployed the previous version of the appliance, you must use the same certificates when you deploy the new version of the appliance. If you do not provide the certificate details when you deploy the new version, self-signed certificates are generated.
  - Do not disable SSH access to the new appliance. You require SSH access to the appliance during the upgrade procedure.
  - Deploy the new version of the appliance to the same vCenter Server instance as the one on which the
previous version is running, or to a vCenter Server instance that is managed by the same Platform Services Controller.

- Do not power on the new version of the appliance.
- Log in to the vSphere Client for the vCenter Server instance on which the previous version is running and on which you deployed the new version.

**Procedure 1: Copy Disks**

1. In the **Hosts and Clusters** view of the vSphere Client, right-click the new version of the appliance and select **Edit Settings**.
2. Remove the following hard disks from the new appliance.

<table>
<thead>
<tr>
<th>Disk to Remove</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard disk 2</td>
<td>Data disk</td>
</tr>
<tr>
<td>Hard disk 3</td>
<td>Database disk</td>
</tr>
<tr>
<td>Hard disk 4</td>
<td>Log disk. Migrating logs is optional.</td>
</tr>
</tbody>
</table>

   i. Hover your pointer over each hard disk and click the **Remove** button on the right-hand side of the row.
   ii. For each disk, select the **Delete files from this datastore** checkbox.
   iii. When you have marked disks 2, 3, and 4 for removal, click **OK**.
3. In the Hosts and Clusters view, right-click the old version of the appliance and select **Power > Shut Down Guest OS**.

   **IMPORTANT**: Do not select **Power Off**.

4. Go to the **Storage** view of the vSphere Client and navigate to the datastore and datastore folder that contain the VM files for the old version of the appliance.
5. Use ctrl-click to select the following VMDK disk files from the old version of the appliance.

<table>
<thead>
<tr>
<th>File to Select</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;appliance_name&gt;_1.vmdk</td>
<td>Hard disk 2, data disk</td>
</tr>
<tr>
<td>&lt;appliance_name&gt;_2.vmdk</td>
<td>Hard disk 3, database disk</td>
</tr>
<tr>
<td>&lt;appliance_name&gt;_3.vmdk</td>
<td>Hard disk 4, log disk. Migrating logs is optional.</td>
</tr>
</tbody>
</table>

6. Click **Copy to**, select the datastore folder of the new appliance as the destination, and click **OK**.
7. When the copy operation finishes, attach the disks from the old appliance to the appropriate nodes on the new appliance.

<table>
<thead>
<tr>
<th>VMDK File</th>
<th>Virtual Device Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;appliance_name&gt;_1.vmdk</td>
<td>SCSI(0:1)</td>
</tr>
<tr>
<td>&lt;appliance_name&gt;_2.vmdk</td>
<td>SCSI(0:2)</td>
</tr>
<tr>
<td>&lt;appliance_name&gt;_3.vmdk</td>
<td>SCSI(0:3)</td>
</tr>
</tbody>
</table>
i. In the **Hosts and Clusters** view, right-click the new appliance and select **Edit Settings**.

ii. Select the option to add a new disk:
   - HTML5 vSphere Client: Click the **Add New Device** button and select **Existing Hard Disk**.
   - Flex-based vSphere Web Client: Click the **New device** drop-down menu, select **Existing Hard Disk**, and click **Add**.

iii. Navigate to the datastore folder for the new appliance, select the `<appliance_name>_1.vmdk` disk file from the old appliance, and click **OK**.

iv. Expand **New Hard Disk** and make sure that the Virtual Device Node for the disk is set to **SCSI(0:1)**.

v. Repeat the procedure to attach `<appliance_name>_2.vmdk` to **SCSI(0:2)** and `<appliance_name>_3.vmdk` to **SCSI(0:3)**.

vi. Click **OK**.

### Procedure 2: Run the Upgrade Script

1. Power on the new version of the vSphere Integrated Containers appliance and wait for it to boot up.

   Booting up can take a few minutes. Go to `https://vic_appliance_address:9443` and wait until the **Complete VIC appliance installation** panel appears.

   **IMPORTANT**: After the new appliance has booted up, do not fill in the **Complete VIC appliance installation** panel. This step is only applicable to new installations, not to upgrades.

2. Use SSH to connect to the new appliance as root user.

   ```
 $ ssh root@new_vic_appliance_address
   ```

   When prompted for the password, enter the appliance password that you specified when you deployed the new version of the appliance.

3. Navigate to the `/etc/vmware/upgrade` folder.

   ```
 $ cd /etc/vmware/upgrade
   ```

4. Run the upgrade script, specifying the `--manual-disks` flag.

   ```
 $./upgrade.sh --manual-disks
   ```

   If you attempt to run the script while the appliance is still initializing and you see the following message, wait for a few more minutes, then attempt to run the script again.

   ```
 Appliance services not ready. Please wait until vic-appliance-load-docker-images.service has completed.
   ```

   To track the progress of the initialization, run `watch docker ps -a` and wait for the `vic-machine-server` container to start.
You can bypass some or all of the following steps by specifying additional optional arguments when you run the upgrade script. For information about the arguments that you can specify, see Specify Command Line Options During Appliance Upgrade.

5. Enter the IP address or FQDN of the vCenter Server instance on which you deployed the new appliance.

6. Enter the Single Sign-On user name and password of a vSphere administrator account.

   The script requires these credentials to access the disk files of the old appliance, and to register the new version of vSphere Integrated Containers with the VMware Platform Services Controller.

7. If vCenter Server is managed by an external Platform Services Controller, enter the IP address or FQDN and the administrator domain of the Platform Services Controller.

   If vCenter Server is managed by an embedded Platform Services Controller, press Enter at each prompt without entering anything.

8. Enter y if the vCenter Server certificate thumbprint is legitimate.

9. Enter the root password of the new version of the appliance.

10. To automatically upgrade the vSphere Integrated Containers plug-in for vSphere Client, enter y at the prompt to Upgrade VIC UI Plugin.

    NOTE: If you enter n to skip the plug-in upgrade, for example because you have multiple appliances of a different version, you can upgrade the plug-in later. You can see version information about the plug-in and the appliance in the Summary tab of the vSphere Integrated Containers plug-in.

11. Verify that the upgrade script has detected your upgrade path correctly.

    • If the script detects your upgrade path correctly, enter y to proceed with the upgrade.
    • If the upgrade script detects the upgrade path incorrectly, enter n to abort the upgrade and contact VMware support.

**Result**

After you see confirmation that the upgrade has completed successfully, the upgraded appliance initializes. When the upgraded appliance has initialized, you can access its appliance welcome page at http://new_appliance_address.

**What to Do Next**

• If you answered y at the prompt to Upgrade VIC UI Plugin, access the vSphere Integrated Containers plug-in for vSphere Client:

  1. Log out of the HTML5 vSphere Client and log back in again. You should see a banner that states There are plug-ins that were installed or updated.
     i. If you use vSphere 6.7u1 or later, click the button in the banner to refresh the vSphere Client.
     ii. On versions of vSphere that pre-date 6.7u1, log out of the HTML5 vSphere Client a second time and log back in again.
  2. Click the vSphere Client logo in the top left corner.
  3. Under Inventories, click vSphere Integrated Containers to access the vSphere Integrated Containers plug-
4. In the **vSphere Integrated Containers > Summary** tab, check that the plug-in is at the correct version.

- Click **Go to the vSphere Integrated Containers Management Portal** in the appliance welcome page, and use vCenter Server Single Sign-On credentials to log in.
  - In the **Home** tab of the vSphere Integrated Containers Management Portal, check that all existing applications, containers, networks, volumes, and virtual container hosts have migrated successfully.
  - In the **Administration** tab, check that projects, registries, repositories, and replication configurations have migrated successfully.

- If, in the previous version, you configured vSphere Integrated Containers Registry instances as replication endpoints, upgrade the appliances that run those registry instances. Replication of images from the new registry instance to the older replication endpoint still functions, but it is recommended that you upgrade the target registry.

- Download the new vSphere Integrated Containers Engine bundle and upgrade your VCHs. For information about upgrading VCHs, see **Upgrade Virtual Container Hosts**.

- If you answered **n** at the prompt to **Upgrade VIC UI Plugin**, and you want to upgrade the plug-in later, see **Reinitialize the vSphere Integrated Containers Appliance**.

## Troubleshooting

If upgrade fails, generate a log bundle and obtain the upgrade log to provide to VMware support. For information about obtaining the logs, see **Access and Configure Appliance Logs**.
Upgrade Virtual Container Hosts

You upgrade virtual container hosts (VCHs) by downloading a new version of vSphere Integrated Containers Engine and running the `vic-machine upgrade` command. You can upgrade VCHs from 1.3.x and 1.4.x to 1.5.x, or from 1.5.x to a later 1.5.y update release.

You use `vic-machine upgrade` to upgrade VCHs to newer versions. You can run `vic-machine upgrade` on VCHs that are either running or powered off. When you upgrade a running VCH, the VCH goes temporarily offline, but container workloads continue as normal during the upgrade process. Upgrading a VCH does not affect any mapped container networks that you defined by setting the `vic-machine create --container-network` option. The following operations are not available during upgrade:

- You cannot access container logs
- You cannot attach to a container
- NAT based port forwarding is unavailable. These are ports that containers expose with the `docker create -p` command when connected to the default bridge network and made available on the public interface of the VCH endpoint VM via network address translation (NAT). Containers that are on container networks are not affected.

**IMPORTANT**: Upgrading a VCH does not upgrade any existing container VMs that the VCH manages. For container VMs to boot from the latest version of `bootstrap.iso`, container developers must recreate them.

For descriptions of the options that `vic-machine upgrade` includes in addition to the Common `vic-machine` Options, see VCH Upgrade Options.

Prerequisites

- You deployed one or more VCHs with an older version of `vic-machine`.
- You downloaded a new version of the vSphere Integrated Containers Engine bundle.
- Run the `vic-machine ls` command by using the new version of `vic-machine` to see the upgrade status of all of the VCHs that are running on a vCenter Server instance or ESXi host. For information about running `vic-machine ls`, see List VCHs and Obtain Their IDs.
- Optionally note the IDs of the VCHs.
- Obtain the vCenter Server or ESXi host certificate thumbprint. For information about how to obtain the certificate thumbprint, see Obtain vSphere Certificate Thumbprints.

Procedure

1. On the system on which you run `vic-machine`, navigate to the directory that contains the new version of the `vic-machine` utility.
2. Run the `vic-machine upgrade` command.

The following example includes the options required to upgrade a VCH in a simple vCenter Server environment.

- You must specify the user name and optionally the password, either in the `target` option or separately in the `--user` and `--password` options.
If the VCH has a name other than the default name, virtual-container-host, you must specify the --name or --id option.

If multiple compute resources exist in the datacenter, you must specify the --compute-resource or --id option.

If your vSphere environment uses untrusted, self-signed certificates, you must also specify the thumbprint of the vCenter Server instance or ESXi host in the --thumbprint option.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.

```
$ vic-machine-operating_system upgrade
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
```

3. If the upgrade operation fails with error messages, run vic-machine upgrade again, specifying a timeout longer than 3 minutes in the --timeout option.

```
$ vic-machine-operating_system upgrade
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --thumbprint certificate_thumbprint
 --id vch_id
 --timeout 5m0s
```

4. If the upgrade operation continues to fail with error messages, run vic-machine upgrade again with the --force option.

**CAUTION:** Specifying the --force option bypasses safety checks, including certificate thumbprint verification. Using --force in this way can expose VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using --force can result in unexpected deployment topologies that would otherwise fail with an error. Do not use --force in production environments.

```
$ vic-machine-operating_system upgrade
 --target vcenter_server_address
 --user Administrator@vsphere.local
 --password password
 --id vch_id
 --timeout 5m0s
 --force
```

5. (Optional) To roll back an upgraded VCH to the previous version, or to revert a VCH that failed to upgrade, run vic-machine upgrade again with the --rollback option.
$ vic-machine-operating_system upgrade
  --target vcenter_server_address
  --user Administrator@vsphere.local
  --password password
  --id vch_id
  --rollback

**IMPORTANT:** Since vic-machine configure also takes a snapshot of the VCH, when you attempt to rollback a VCH that has been upgraded with vic-machine upgrade and has undergone a configuration change with vic-machine configure, you must run vic-machine configure --rollback to roll back the configuration to the previous settings before running vic-machine upgrade --rollback to roll the VCH back to its previous version.

**Result**

During the upgrade process, vic-machine upgrade performs the following operations:

- Validates whether the configuration of the existing VCH is compatible with the new version. If not, the upgrade fails.
- Uploads the new versions of the appliance.iso and bootstrap.iso files to the VCH. There is no timeout for this stage of the upgrade process, so that the ISO files can upload over slow connections.
- Creates a snapshot of the VCH endpoint VM, to use in case the upgrade fails and has to roll back.
- Boots the VCH by using the new version of the appliance.iso file.
- Deletes the snapshot of the VCH endpoint VM once the upgrade has succeeded.
- After you upgrade a VCH, any new container VMs will boot from the new version of the bootstrap.iso file.
- If the upgrade times out while waiting for the VCH service to start, the upgrade fails and rolls back to the previous version.
- If the upgrade fails with the error **another upgrade/configure operation is in progress**, a previous attempt at upgrading the VCH might have been interrupted without rolling back. In this case, run vic-machine configure with the --reset-progress option. For information about vic-machine configure --reset-progress, see *Reset Upgrade or Configuration Progress*. 
VCH Upgrade Options

The command line utility for vSphere Integrated Containers Engine, vic-machine, provides an upgrade command that allows you to upgrade virtual container hosts (VCHs) to a newer version.

The vic-machine upgrade command includes the following options in addition to the common options described in Common vic-machine Options.

NOTE: Wrap any option arguments that include spaces or special characters in quotes. Use single quotes if you are using vic-machine on a Linux or Mac OS system and double quotes on a Windows system.

--appliance-iso

Short name: --ai

The path to the new version of the ISO image from which to upgrade the VCH appliance. Set this option if you have moved the appliance.iso file to a folder that is not the folder that contains the vic-machine binary or is not the folder from which you are running vic-machine. Include the name of the ISO file in the path.

NOTE: Do not use the --appliance-iso option to point vic-machine to an --appliance-iso file that is of a different version to the version of vic-machine that you are running.

--appliance-iso path_to_ISO_file/ISO_file_name.iso

--bootstrap-iso

Short name: --bi

The path to the new version of the ISO image from which to upgrade the container VMs that the VCH manages. Set this option if you have moved the bootstrap.iso file to a folder that is not the folder that contains the vic-machine binary or is not the folder from which you are running vic-machine. Include the name of the ISO file in the path.

NOTE: Do not use the --bootstrap-iso option to point vic-machine to a --bootstrap-iso file that is of a different version to the version of vic-machine that you are running.

--bootstrap-iso path_to_ISO_file/bootstrap.iso

--force

Short name: -f

Forces vic-machine upgrade to ignore warnings and continue with the upgrade of a VCH. Errors such as an incorrect compute resource still cause the upgrade to fail.
**CAUTION:** Specifying the `--force` option bypasses safety checks, including certificate thumbprint verification. Using `--force` in this way can expose VCHs to the risk of man-in-the-middle attacks, in which attackers can learn vSphere credentials. Using `--force` can result in unexpected deployment topologies that would otherwise fail with an error. Do not use `--force` in production environments.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>--force</strong></td>
<td>Specifies whether VCH updates should bypass safety checks.</td>
</tr>
</tbody>
</table>

**--rollback**

Short name: None

Rolls a VCH back to its previous version, for example if upgrade failed. Before starting the upgrade process, `vic-machine upgrade` takes a snapshot of the existing VCH. The upgrade process deletes older snapshots from any previous upgrades. The `--rollback` option reverts an upgraded VCH to the snapshot of the previous deployment. Because `vic-machine upgrade` only retains one snapshot, you can only use `--rollback` to revert the VCH to the version that immediately precedes the most recent upgrade.

**IMPORTANT:** Since `vic-machine configure` also takes a snapshot of the VCH, when you attempt to rollback a VCH that has been upgraded with `vic-machine upgrade` and has undergone a configuration change with `vic-machine configure`, you must run `vic-machine configure --rollback` to roll back the configuration to the previous settings before running `vic-machine upgrade --rollback` to roll the VCH back to its previous version.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>--rollback</strong></td>
<td>Rolls a VCH back to its previous version.</td>
</tr>
</tbody>
</table>

**--reset-progress**

If an attempt to upgrade a VCH was interrupted before it could complete successfully, any further attempts to run `vic-machine upgrade` fail with the error `another upgrade/configure operation is in progress`. This happens because `vic-machine upgrade` sets an `UpdateInProgress` flag on the VCH endpoint VM that prevents other operations on that VCH while the upgrade operation is ongoing. If an upgrade operation is interrupted before it completes, this flag persists on the VCH indefinitely.

To clear the flag so that you can attempt further `vic-machine upgrade` operations, run `vic-machine upgrade` with the `--reset-progress` option.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>--reset-progress</strong></td>
<td>Clears the <code>UpdateInProgress</code> flag on the VCH endpoint VM.</td>
</tr>
</tbody>
</table>

**IMPORTANT:** Before you run `vic-machine upgrade --reset-progress`, check in Recent Tasks in the vSphere Client that there are indeed no update or configuration operations in progress on the VCH endpoint VM.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>--debug</strong></td>
<td>Enables more verbose levels of logging.</td>
</tr>
</tbody>
</table>

Short name: `-v`

Upgrade the VCH with more verbose levels of logging. For example, by setting a higher debug level, you increase the verbosity of the logging for VCH upgrade, initialization of VCH services, container VM initialization, and so on.
**NOTE:** Do not confuse the `vic-machine upgrade --debug` option with the `vic-machine debug` command, that enables access to the VCH endpoint VM. For information about `vic-machine debug`, see Debug Running Virtual Container Hosts.

You can set a debugging level of 1, 2, or 3. Setting level 2 or 3 changes the behavior of `vic-machine upgrade` as well as increasing the level of verbosity of the logs.

```
--debug 1
```
Back Up and Restore vSphere Integrated Containers

A vSphere Integrated Containers installation is inherently stateful, even if the containers running on it are not. As such, the question of how to back up and restore vSphere Integrated Containers is an important one.

The main components of vSphere Integrated Containers store the following persistent data:

- vSphere Integrated Containers Registry stores immutable image data. You can back up vSphere Integrated Containers Registry state by using VM snapshots and clones.
- vSphere Integrated Containers Management Portal stores user and project metadata. You can back up vSphere Integrated Containers Management Portal state by using VM snapshots and clones.
- Container volumes store persistent data that container VMs use and share. You can back up container volumes by using snapshots and clones only if the container is not running. You restore container volumes by copying virtual disks to a known location.

You can consider all other data in vSphere Integrated Containers to be ephemeral state, that is not suitable for backup.

The following topics describe the types of state that a typical vSphere Integrated Containers installation stores, where it resides, the nature of the data, why you might want to back it up and some alternatives to a backup strategy. The topics describe different approaches to backup and their relative merits.

- Backup and Restore the vSphere Integrated Containers Appliance
- Backing Up Virtual Container Host Data
- Backing Up and Restoring Container Volumes
Back Up and Restore the vSphere Integrated Containers Appliance

The vSphere Integrated Containers appliance runs various services, such as vSphere Integrated Containers Management Portal, vSphere Integrated Containers Registry, the API for the vSphere Client plug-in, and the Web server for the appliance welcome page and vSphere Integrated Containers Engine download. The appliance has four virtual disks attached to it:

<table>
<thead>
<tr>
<th>Disk No.</th>
<th>Path</th>
<th>Node</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>SCSI(0:0)</td>
<td>The root disk, that contains the operating system and application state of the vSphere Integrated Containers appliance.</td>
</tr>
<tr>
<td>2</td>
<td>/storage/data/</td>
<td>SCSI(0:1)</td>
<td>A data disk that contains, among other things, the vSphere Integrated Containers Registry instance that is running in the appliance.</td>
</tr>
<tr>
<td>3</td>
<td>/storage/db/</td>
<td>SCSI(0:2)</td>
<td>A database disk that contains the MYSQL, Clair, and Notary databases for vSphere Integrated Containers Registry.</td>
</tr>
<tr>
<td>4</td>
<td>/storage/log/</td>
<td>SCSI(0:3)</td>
<td>A logging disk that contains the logs for the different vSphere Integrated Containers components.</td>
</tr>
</tbody>
</table>

The separation of different types of data between disks allows you to upgrade the appliance with an existing data disk from a previous installation. It also allows you to back up and restore the different disks separately, if necessary.

The recommended way to back up the appliance is to copy the base disks. You can then restore the appliance by attaching the cloned disks to a new instance of the appliance.

Copy the Base Disks

You can copy the base disks manually by copying the VMDK files in the vSphere Client.

Procedure

1. Right-click the appliance VM and elect Power > Shut Down Guest OS to shut down the appliance VM.
   
   **IMPORTANT**: Do not select Power Off.

   You must shut down the VM in order to quiesce the database before the backup. Also, if you use NFS datastores, you cannot copy disk files while the VM is powered on.

2. Go to the Storage view of the vSphere Client and navigate to the datastore and datastore folder that contain the VM files for the version of the appliance that you want to back up.

3. Use ctrl-click to select the following VMDK disk files from the old version of the appliance.

<table>
<thead>
<tr>
<th>File to Select</th>
<th>Description</th>
</tr>
</thead>
</table>
4. Click Copy to, select a target datastore folder in which to copy the backup disk files, and click OK.

Alternatively, you can use `vmkfstools` to clone the disks and manually copy the VM configurations. For information about using `vmkfstools`, see Using `vmkfstools` in the vSphere documentation.

## Restoring Cloned Disks

To restore the appliance from cloned disks, deploy a new instance of the vSphere Integrated Containers appliance of the same version as the one you backed up. You then copy the cloned VMDK files into the new appliance datastore and attach them to the appropriate virtual device nodes on the new appliance VM.

**IMPORTANT:** After you deploy the new instance of the appliance, do not power it on. If you do power it on, power off without filling in the Complete VIC appliance installation panel, that registers the appliance with vCenter Server.

### Procedure

1. Right-click the new appliance VM and select Edit Settings.
2. Remove the hard disks from the new appliance.

<table>
<thead>
<tr>
<th>Disk to Remove</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard disk 1</td>
<td>Root disk</td>
</tr>
<tr>
<td>Hard disk 2</td>
<td>Data disk</td>
</tr>
<tr>
<td>Hard disk 3</td>
<td>Database disk</td>
</tr>
<tr>
<td>Hard disk 4</td>
<td>Log disk. Migrating logs is optional.</td>
</tr>
</tbody>
</table>

   i. Hover your pointer over each hard disk and click the Remove button on the right-hand side of the row.
   ii. For each disk, select the Delete files from this datastore checkbox.
   iii. When you have marked the disks for removal, click OK.
3. Go to the Storage view of the vSphere Client and navigate to the datastore and datastore folder that contain the backup disk files that you copied from the old appliance.
4. Select the appropriate VDMK files and click Copy to to copy the backup VMDK files to the datastore folder of the new appliance.
5. Attach the backup VMDK files to the appropriate nodes on the new appliance.

<table>
<thead>
<tr>
<th>VMDK File</th>
<th>Virtual Device Node</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;appliance_name&gt;.vmdk</code></td>
<td>SCSI(0:0)</td>
</tr>
<tr>
<td><code>&lt;appliance_name&gt;_1.vmdk</code></td>
<td>SCSI(0:1)</td>
</tr>
<tr>
<td><code>&lt;appliance_name&gt;_2.vmdk</code></td>
<td>SCSI(0:2)</td>
</tr>
</tbody>
</table>
i. In the Hosts and Clusters view, right-click the appliance and select Edit Settings.

ii. Select the option to add a new disk:
   - HTML5 vSphere Client: Click the Add New Device button and select Existing Hard Disk.
   - Flex-based vSphere Web Client: Click the New device drop-down menu, select Existing Hard Disk, and click Add.

iii. Navigate to the datastore folder for the appliance, select the backup version of the `<appliance_name>.vmdk` disk file, and click OK.

iv. Expand New Hard Disk and make sure that the Virtual Device Node for the disk is set to SCSI(0:0).

v. Repeat the procedure to attach `<appliance_name>_1.vmdk` to SCSI(0:1), `<appliance_name>_2.vmdk` to SCSI(0:2), and `<appliance_name>_3.vmdk` to SCSI(0:3).

vi. Click OK.

6. Power on the new appliance VM.

## Take Snapshots of the Appliance VM

The appliance disks are not independent of the appliance VM, so if you take a snapshot of the appliance VM, it also takes snapshots of all of the disks.

You must shut down the appliance VM before you take the snapshot. Taking snapshots while the appliance is running can result in the appliance coming back up in an inconsistent state if you restore it from a snapshot.

**IMPORTANT:** It is not recommended to use snapshots as your main backup method. Use snapshots only for short-term, temporary backups. For more information see the best practices for using snapshots in VMware KB 1025279.

### Procedure

1. Right-click the appliance VM and elect Power > Shut Down Guest OS to shut down the appliance VM.

   **IMPORTANT:** Do not select Power Off.

2. Take a snapshot of the appliance VM.

3. Power on the appliance VM.
Back up Virtual Container Host Data

A virtual container host (VCH) is a pool of virtual resources in which container images are deployed as lightweight VMs. A VCH consists of the VCH endpoint VM, and any number of container VMs. The endpoint VM runs the control plane and container VMs are created, powered on, powered off and deleted in response to container client calls to create, start, stop and delete containers.

This topic provides information about different types of VCH data, what data you should back up, what data does not require backup, and why.

- VCH Components and State
- High Availability
- Data Integrity
- Conclusions

VCH Components and State

To understand the requirements when backing up VCH data, you must first understand state for the different components of a VCH.

Containers

Containers encourage application designers to think about where state belongs and the nature of that state. By design, any part of the container file system that is not a mounted volume is ephemeral by nature and is lost when the container is deleted.

Container Volumes

Assume that a stateful container has one or more volumes attached and a stateless container does not.

- A stateless container that reads and writes to a remote database can be easily scaled up or down and can be run in multiple failure domains behind a load-balancer.
- A stateful container is tied to running in a location from which it can access its volume store. A container volume is intentionally persistent by nature and can exist beyond the lifespan of a container or even of a VCH.

You must also consider whether a volume is sharable between containers. If a volume is an NFS share, it is possible for multiple containers in multiple failure domains to share the same persistent data, provided that they have the correct locking semantics. If a volume is not sharable, the ability for compute resources to move between ESXi hosts is constrained by the use of a shared datastore or by physically copying the data. vSphere makes it possible to live-migrate workloads between hosts in a cluster while keeping persistent data on a shared datastore. For this reason, vSphere Integrated Containers is well-suited to running stateful workloads.

Anonymous Volumes
An anonymous volume is created in the default volume store every time a container is run from an image that uses a Dockerfile with a VOLUME command. Anonymous volumes are not desirable for production, because you cannot specify the volume size, name, or class of storage. This has implications for your backup strategy, because it might not be clear what anonymous volumes are being used for.

**Container Images**

Container images are immutable and should persist in a container registry. This is one of the reasons why vSphere Integrated Containers includes vSphere Integrated Containers Registry. When a developer pulls an image, either explicitly or as part of a container execution, the VCH caches the image locally. You can consider the VCH image cache to be ephemeral, even though the containers depend on the images being present in the cache when they run.

**Configuration State**

When you deploy a VCH, you provide a significant amount of configuration to vic-machine, including networks, datastores, credentials, and so on. All of this configuration data is stored in the VMX file for the VCH endpoint VM. Running containers also have a configuration state, which is stored in the VMX file of each container VM.

Containers and the VCH endpoint VM are designed to be stateless with respect to guest configuration. Nothing is persisted in the guest OS. When a container VM starts up, it discovers its state from its VMX file. When a VCH endpoint VM starts up, it discovers both its own state and also the state of the image cache and the existing containers. The stateless nature of the VCH endpoint VM simplifies upgrades. Upgrade is just a case of powering down the VCH endpoint VM, swapping out the ISO from which it boots, and powering it back up again.

**High Availability**

The VCH is designed so that containers can run independently of the availability of the VCH endpoint VM. However, it is important to note that this is dependent on how the containers are deployed.

The most important consideration is how the networking for the container is configured. If containers use port mapping, the containers are accessible over a network via a port on the VCH endpoint VM. If the endpoint VM goes down for any reason, that network connection is no longer available. This is why vSphere Integrated Containers offers the ability to connect containers directly to a vSphere network by using the --container-network option. If you use container networks, containers have their own identity on the container network. Consequently, the network and the container have no dependency on the VCH endpoint VM for execution.

You can configure vSphere High Availability to restore the VCH endpoint VM in the case of an ESXi host failure. If a host goes down and a VCH endpoint VM is lost, the only impact should be a temporary loss of the control plane, namely the ability to manage the lifecycle of containers, networks, and volumes.

**Data Integrity**

Data integrity for persistent data is extremely important, but a backup strategy is not the only way to ensure data integrity.
Data Replication

vSphere Integrated Containers supports different classes of storage, of which VMware vSAN is an example. vSAN offers built-in redundancy by replicating data to multiple physical drives and can tolerate hardware failure or nodes becoming unavailable. This is particularly useful for persistent volumes.

You can also replicate container image data by installing the vSphere Integrated Containers appliance on vSAN storage. vSphere Integrated Containers Registry also offers the ability to replicate image data to other registry instances.

Data Encryption

Encryption of persistent data is typically provided by the class of data storage that you use. For example, vSAN provides built-in encryption capabilities.

vSphere Integrated Containers makes it easy to specify different classes of datastore for different classes of data, by using the `vic-machine create --image-store` and `--volume-store` options. You specify a single image store in which to store immutable image and ephemeral container state for a VCH. You can then specify any number of volume stores which map to different vSphere datastores, which container developers can specify by their label when they provision a container.

Making Backups

Replication and Encryption are good solutions for protecting data integrity within a given isolation domain. However, if an entire isolation domain is lost or if data becomes corrupted, keeping backups is essential.

The fact that vSphere Integrated Containers volumes are first-class citizens on vSphere datastores means that you can back up container volumes by using any solution that knows how to backup virtual disks.

Conclusions

The best approach to backing up VCH data is to make a clear distinction between persistent state and ephemeral state, and to build well-defined strategies for application deployment, configuration, and backup.

Data that Does Not Require Back Up

Configuration state of container VMs and of the VCH endpoint VM is not a good candidate for backup. This is because configuration state is highly dependent on a tight coupling between itself and the current state of the vSphere environment. As such, there is a strong possibility that a container VM or VCH endpoint VM that you bring back from a backup will not have a configuration state that is consistent with the environment to which you are restoring it. This is not the case with volumes or container images, which can exist independently of any vSphere environment and which can be copied or moved without problems.

Images cached in the VCH Image Store are not good candidates for backup because they are copies of immutable state already stored and backed up in a container registry.
It is important to remember that if the VCH endpoint VM becomes unavailable, this only impacts the ability to manage the lifecycle of the containers running in that VCH. If you have used container networks, the containers themselves continue to run unimpeded. If you cannot resolve the issues affecting the VCH endpoint VM or vSphere environment, you should be able to create a new VCH in a different vSphere environment, deploy new instances of the same container workloads, and switch to those new instances. This depends on having the appropriate load-balancing and data migration in place however, which is typically provided by a higher-level scheduler.

**Data that Requires Back Up**

In this release of vSphere Integrated Containers, the only VCH data that you should consider for backup is the following:

- Persistent state that is stored in container volumes.

For information about how to backup and restore container volumes, see [Backing Up and Restoring Container Volumes](#).
Backing Up and Restoring Container Volumes

This topic describes the types of volumes that vSphere Integrated Container supports, and provides an example of how containers persist data in container volumes.

vSphere Integrated Containers supports two types of volumes, each of which has different characteristics.

- VMFS virtual disks (VMDKs), mounted as formatted disks directly on container VMs. These volumes are supported on multiple vSphere datastore types, including NFS, iSCSI and VMware vSAN. They are thin, lazy zeroed disks.
- NFS shared volumes. These volumes are distinct from a block-level VMDK on an NFS datastore. They are Linux guest-level mounts of an NFS file-system share.

VMDK Volumes

A VMDK volume comprises two elements:

- A .vmdk file which is a formatted virtual disk mounted at a configured location in a container guest file system
- Some metadata that describes the volume.

These volumes are stored directly on a vSphere datastore in a location that you specify when you deploy a virtual container host (VCH).

VMDK volume disks are locked for exclusive use while a container VM runs, so other running containers cannot share them. It is possible to configure multiple containers with the same volume disk, but only one container can run at a time.

Another limitation of VMDK disks is that you cannot clone them while they are in use. You can take snapshots and then clone the snapshots, but vSphere Integrated Containers does not currently have built-in support for doing this. Consequently, you can only clone vSphere Integrated Containers volume disks while a container is not running.

For information about backing up and restoring VMDK volumes, see the following topics.

- Backing Up VMDK Volumes
- Restoring VMDK Volumes

NFS Shared Volumes

NFS volume support is designed for use-cases where multiple containers need read-write access to the same volume.

Taking snapshots and making clones of NFS volumes is handled by the system that provides the NFS server, which should have its own backup strategy. If the NFS server is running as a VM, you can use the same backup strategy as for other stateful VMs.

Example: Persistent Container State
This example uses a VCH with two VMDK volume stores and one NFS volume store to demonstrate how data persists in container volumes.

**Procedure**

1. Run `vic-machine create` with the following options to deploy a VCH with three volume stores,

   ```
 --volume-store vsanDatastore/volumes/my-vch-data:replicated-encrypted
 --volume-store iSCSI-nvme/volumes/my-vch-logs:default
 --volume-store nfs://10.118.68.164/mnt/nfs-vol?uid=0&gid=0&proto=tcp:shared
   ```

   - The first volume store is on a vSAN datastore and uses the label `replicated-encrypted`. Container developers can create a volume in that volume store by running the following command:
     ```
 docker volume create --opt VolumeStore=replicated-encrypted myData
     ```

   - The second volume store uses cheaper storage backed by a FreeNAS server mounted using iSCSI. It is used for storing log data. It has the label `default`, which means that any volume that is created without a specifying a volume store is created here.

   - The third volume store is an NFS export called `/mnt/nfs-vol` on an NFS server.

2. Browse the three datastores to see the folders that deploying this VCH created.

   ```
 vsanDatastore/volumes/my-vch-data/volumes
 iSCSI-nvme/volumes/my-vch-logs/volumes
 nfs://10.118.68.164/mnt/nfs-vol/volumes
   ```

3. Run the following commands in the Docker client to create three volumes.

   ```
 $ docker volume create --opt VolumeStore=replicated-encrypted --opt Capacity=10G mydata
 $ docker volume create --opt Capacity=5G mylogs
 $ docker volume create --opt VolumeStore=shared myshared
   ```

   Note that the second example does not specify a volume store, which implies the use of the `default` volume store.

4. Browse the three datastores to see the files that these commands created.

   ```
 vsanDatastore/volumes/my-vch-data/volumes/mydata/mydata.vmdk
 vsanDatastore/volumes/my-vch-data/volumes/mydata/ImageMetadata/DockerMetaData
 iSCSI-nvme/volumes/my-vch-logs/volumes/mylogs/mylogs.vmdk
 iSCSI-nvme/volumes/my-vch-logs/volumes/mylogs/ImageMetadata/DockerMetaData
 nfs://10.118.68.164/mnt/nfs-vol/volumes/myshared
 nfs://10.118.68.164/mnt/nfs-vol/volumes_metadata/myshared/DockerMetaData
   ```
As a vSphere administrator, you would not normally need to know the conventions and contents of these folders, but it is important for the purposes of demonstrating backup and restore.

5. Examine the `DockerMetaData` file of the `mydata` volume.

You see JSON data that adds some context to this particular disk. This is the same data that would be returned by running `docker volume inspect mydata` in the Docker client:

```
{
 "Driver":"local",
 "DriverOpts":{
 "Capacity":"10G",
 "VolumeStore":"replicated-encrypted"
 },
 "Name":"mydata",
 "Labels":{
 },
 "AttachHistory":[
 "",
],
 "Image":"
}
```

6. In the Docker client, mount the volumes to a container and add some data to them.

```
$ docker run -it --name test -v mydata:/data -v mylogs:/logs -v shared:/shared ubuntu
$ echo "some data" > /data/some-data
$ echo "some logs" > /logs/some-logs
$ echo "some shared" > /shared/some-shared
$ exit
```

This operation creates a new container VM with volumes mounted at the specified locations. The `echo` command sends some data to the `mydata` volume, some logs to the `mylogs` volume, and some shared data to the `shared` volume. The fact that container has exited means that the container VM is now powered off, but the volume disks are still part of its configuration. If you restart the container, the volumes are mounted again.

If you start a new container with the same volumes configured on it, the new container will be able to see the existing data and modify it. Remember that the `logs` and `data` volumes are exclusive to a single running container, whereas the `shared` volume is not.

7. Run `docker rm test` to delete the container.

8. Run `docker volume ls` to list the available volumes.

The volumes and the data that they contain are still available after you have deleted the containers.

```
<table>
<thead>
<tr>
<th>DRIVER</th>
<th>VOLUME NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>vsphere</th>
<th>mydata</th>
</tr>
</thead>
<tbody>
<tr>
<td>vsphere</td>
<td>mylogs</td>
</tr>
<tr>
<td>vsphere</td>
<td>myshared</td>
</tr>
</tbody>
</table>

9. Browse the three datastores to see that the files that the container created are still present.
Backing Up VMDK Volumes

Backing up a VMDK volume involves copying the virtual disk to a new location. However, there are some important caveats to this. Most commercial backup solutions focus on making clones or snapshots of a VM. They might not allow you to back up virtual disks on their own. Backup solutions have file-based backup and restore, but whether or not this is the correct approach depends on the characteristics of the datastore.

For example, tar and untar will work with virtual disks on a FreeNAS, ZFS, or iSCSI setup, but will not work with VMware vSAN. This is because in vSAN, virtual disk data is a hidden object, so only the metadata can be seen. Tools such as vmkfstools provide one way to ensure that a virtual disk is cloned properly.

Snapshots vs Clones

Taking a snapshot of a VM or disk allows its state to be frozen in time on the same datastore and potentially restored at a future date. Snapshots can protect against data corruption, but they do not protect against datastore hardware failure or accidental deletion, unless you clone and move the snapshot.

Cloning a VM or a disk performs a deep copy that you can move to a different datastore and bring back in its entirety. This can protect against corruption, hardware failure, and deletion.

Container VMs are not designed for snapshots to be taken, and volume disks are mounted as independent persistent disks. This is by design, so that disks are not deleted when a container is deleted, but the disks are also not subject to snapshots. As such, currently the only way to back up volume disks is to clone them. For more information about cloning volumes, see Datastore Approach below.

Thin vs Fat Disks

vSphere Integrated Containers creates VMDK volumes as thin, lazy zeroed disks. This means that they only take up as much space as they need on the datastore, up to a set capacity limit.

Note that some methods of cloning preserve thin provisioning and some do not. Most file copy approaches to backup will make a byte-for-byte copy, which results in the creation of a fat clone of a thin disk. For more information about the file copy approach to backup, see File Copy Approach below.

The vmkfstools utility maintains the thinness of a volume disk when it makes a clone. For more information about vmkfstools, see Using vmkfstools below.

You should experiment with the clone and backup solutions that you use to be aware of the consequences of making thin disks fat, particularly when it comes to the impact of restoring disks from a backup.

Approaches to Backing Up VMDK Volumes

The following examples show how you can use different approaches to back up the iSCSI and vSAN volume stores used in Example: Persistent Container State in the previous topic.
Datastore Approach

Your backup solution might have the ability to create snapshots or clones of entire datastores. This is a good way to ensure that you have backed up everything, but it also makes it more important to use different datastores for different types of state. For example, it would potentially be a waste of bandwidth to back up ephemeral state or cached immutable image state.

File Copy Approach

A file copy approach is the simplest way to back up volumes, because you can back up an entire volume store by copying the root folder from the datastore. However, as mentioned above, this does not work for all datastore types, and most probably results in fat versions of volume disks.

For example, you can use Veeam to create a File Copy Job that copies the /vmfs/volumes/iSCSI-nvme/volumes/my-vch-logs volume store from the example. This will copy the disks, the folders, and the metadata.

By backing up the root folder, you keep the path structure intact. If you restore the volume store to the current VCH or add it to a new VCH, the configuration of the vic-machine --volume-store argument matches that of the path you backed up.

Using vmkfstools

This example backs up the vsanDatastore/volumes/my-vch-data vSAN volume store from the example by cloning the virtual disk to another datastore by using vmkfstools and then copying over the metadata.

1. In an ESXi host shell, navigate to the volumes folder.
   
   ```bash
 cd /vmfs/volumes
   ```

   **NOTE:** The ESXi host must be able to access both the vSAN and iSCSI datastores.

2. Create a folder in the iSCSI datastore in which to copy the backup.
   
   ```bash
 mkdir -p iSCSI-nvme/volumes/my-vch-data-backup/volumes/mydata
   ```

3. Use vmkfstools to make a clone of the vSAN volume store disk in the folder that you just created in the iSCSI datastore.
   
   ```bash
 vmkfstools -i vsanDatastore/volumes/my-vch-data/volumes/mydata/mydata.vmdk iSCSI-nvme/volumes/my-vch-data-backup/volumes/mydata/mydata.vmdk
   ```

4. Copy the volume store metadata into the backup folder.
   
   ```bash
 cp -R vsanDatastore/volumes/my-vch-data/volumes/mydata/imageMetadata/ iSCSI-nvme/volumes/my-vch-data-backup/volumes/mydata
   ```

This is a rather manual approach to backup, but you could write a script that lists all of the folders in vsanDatastore/volumes/my-vch-data/volumes and uses that as an input to another script based on the above commands.
Restoring VMDK Volumes

How to restore volumes is conceptually straightforward. It should be a case of copying the VMDK disks and metadata back to either their original location or to a new location, or restoring the state of an NFS server. However, it is important to understand how vSphere Integrated Containers interacts with the volumes to ensure that this succeeds without error.

- Restoring Volumes into an Existing VCH
- Restoring Volumes into a new VCH

Restoring Volumes into an Existing VCH

Restoring a volume into an existing VCH is a question of copying the VMDK disks and metadata back to the expected location on the datastores.

An important caveat is that you cannot overwrite a volume disk that is attached to a currently running container. If you must bring back a volume that has the same name as one that is in use, there are two solutions:

- Rename the cloned volume
- Rename the cloned volume store.

Renaming a Cloned Volume

Renaming a cloned volume requires 3 steps:

1. Rename the volume folder to `newname`.
2. Rename the `.vmdk` file to `newname.vmdk`.
3. Set the value of the `name` tag in the `DockerMetadata` file JSON to `newname`.
4. Copy the volume into the volume store.
5. For vSphere Integrated Containers engine to see the new volume, reboot the VCH endpoint VM.

   You need to reboot because the act of copying the volume into the volume store does not notify vSphere Integrated Containers of its existence. Rebooting the VCH endpoint VM is not unusual or drastic. Any reconfiguration of the VCH causes a reboot of the VCH endpoint VM.

Renaming a Cloned Volume Store

You can bring back an entire cloned volume store under a different name.

1. Rename the root folder of the cloned volume store.
2. Copy it onto a datastore that is visible to the VCH.
3. Run `vic-machine configure --volume-store` to add the cloned volume store to the VCH.

Restoring Volumes into a new VCH
Restoring a volume store and then creating a new VCH that can use the volumes is a matter of ensuring that the `vic-machine create --volume-store` argument is correctly configured to point to the volume store. vSphere Integrated Containers is designed to deploy new VCHs onto existing volume stores. You can check whether the volume store has been picked up by running `docker info` and `docker volume ls`. 
Manage the vSphere Integrated Containers Appliance

This section provides information about how to manage your vSphere Integrated Containers appliance after deployment.

- Reconfigure the vSphere Integrated Containers Appliance
- Obtain the Thumbprints and CA Files of the vSphere Integrated Containers Appliance Certificates
- Change Appliance TLS Certificates
- Reinitialize the Appliance
- Update Platform Services Controller Registration
- Check the Status of the vSphere Integrated Containers Services
- Restart the vSphere Integrated Containers Services
- Recover the Root Password for the vSphere Integrated Containers Appliance
- Uninstall vSphere Integrated Containers
Reconfigure the vSphere Integrated Containers Appliance

After you have deployed the vSphere Integrated Containers appliance, you can reconfigure the settings that you provided to the OVA installer during deployment. You can also reconfigure the appliance VM itself, for example to expand the size of the different disks, or to increase memory and processing power.

Prerequisites

Log in to the vSphere Client:

- If you use vCenter Server 6.7 update 1 or later, you can use the HTML5 vSphere Client to reconfigure the appliance.
- If you use a version of vCenter Server that pre-dates 6.7 update 1, you must use the Flex-based vSphere Web Client. You cannot reconfigure the appliance in the HTML5 vSphere Client.

Procedure

1. Shut down the vSphere Integrated Containers appliance by selecting Shut Down Guest OS.

   IMPORTANT: Do not select Power Off.

2. Right-click the vSphere Integrated Containers appliance VM, and select Edit Settings.

3. In the Virtual Hardware tab, reconfigure the appliance VM as necessary.
   - Increase the number of CPUs
   - Increase the amount of RAM
   - Increase the size of any of the hard disks, as necessary

4. Modify the settings that you provided when you deployed the appliance.
   
   In the Flex-based vSphere Web Client, stay in the Edit Settings window and select vApp Options.
   
   In the HTML5 vSphere Client (vCenter Server 6.7 update 1 and later), you access the vApp Options as follows:
   
   i. Exit the Edit Settings window.
   ii. Select the appliance VM and select the Configure tab.
   iii. Select vApp Options and scroll to the Properties section.
   iv. Click Category to sort the settings into the order in which they appear in the OVA installer.
   v. For each setting that you want to change, select the corresponding row and click Set Value.

   You can modify the following settings:
   
   - In Appliance Configuration, update the password for the appliance root account, enable or disable SSH log in, and add or update certificates. For information about changing TLS certificates, see Change Appliance TLS Certificates.
   - Reconfigure Networking Properties to set a static IP address, update the network configuration, or remove
all settings to enable DHCP.

- Reconfigure **Registry Configuration** to change the ports on which the registry publishes services, or to enable or disable garbage collection.
- Reconfigure **Management Portal Configuration** to change the port on which the portal publishes services.
- Reconfigure **Create Example Users** to enable or disable the creation of example users, update the user name prefix, or change the password.

**NOTE**: It is not recommended to modify the **Deployment** and **Authoring** settings.

## Result

When you power the appliance back on, the new settings are automatically applied. If you resized one or more of the hard disks, the appliance automatically handles the partitioning of the disks during the boot process.
Obtain the Thumbprint and CA File of the vSphere Integrated Containers Appliance Certificate

If you do not provide custom certificates during deployment, the OVA installer generates a single certificate for the vSphere Integrated Containers Management Portal and the vSphere Integrated Containers file server. This certificate authenticates connections to the appliance welcome page, vSphere Integrated Containers Management Portal, the vSphere Integrated Containers Engine bundle, and the vSphere Client plug-in downloads. If you deploy the appliance with an automatically generated certificate, the certificate is self-signed by an automatically generated Certificate Authority (CA).

The vSphere administrator can obtain the thumbprint and CA file and passes them to other users who need to access the appliance welcome page or the vSphere Integrated Containers Management Portal.

Procedure

1. Use SSH to connect to the vSphere Integrated Containers appliance as root user.

   ```
 $ ssh root@vic_appliance_address
   ```

2. Use openssl to view the certificate fingerprint.

   ```
 openssl x509 -in /storage/data/certs/server.crt -noout -sha1 -fingerprint
   ```

3. Take a note of the thumbprint and close the SSH session.

4. Use scp to copy the CA file to your local machine.

   ```
 scp root@vic_appliance_address:/opt/vmware/fileserver/cert/ca.crt /path/on/local_machine/folder1
   ```

You can share the thumbprint and CA file with users who need to connect to the vSphere Integrated Containers Management Portal or downloads. For information about how to verify the thumbprint and trust the CA, see Verify and Trust the vSphere Integrated Containers Appliance Certificate.
Change vSphere Integrated Containers Appliance TLS Certificates

If you do not provide TLS certificates during vSphere Integrated Containers appliance deployment, the OVA installer uses auto-generated certificates. You can reconfigure the appliance settings to change the TLS certificates after you have deployed it.

Prerequisites

Log in to the vSphere Client:

- If you use vCenter Server 6.7 update 1 or later, you can use the HTML5 vSphere Client to reconfigure the appliance.
- If you use a version of vCenter Server that pre-dates 6.7 update 1, you must use the Flex-based vSphere Web Client. You cannot reconfigure the appliance in the HTML5 vSphere Client.

Procedure

1. Shut down the vSphere Integrated Containers appliance by selecting Shut Down Guest OS.

   **IMPORTANT:** Do not select Power Off.

2. Modify the TLS certificates:

   In the Flex-based vSphere Web Client, stay in the Edit Settings window and select vApp Options.

   In the HTML5 vSphere Client (vCenter Server 6.7 update 1 and later), you access the vApp Options as follows:

   i. Exit the Edit Settings window.
   ii. Select the appliance VM and select the Configure tab.
   iii. Select vApp Options and scroll to the Properties section.
   iv. Click Category to sort the settings into the order in which they appear in the OVA installer.
   v. For each setting that you want to change, select the corresponding row and click Set Value.

   You can modify the following settings in the Appliance Configuration section:

   vi. In the Appliance TLS Certificate text box, paste the contents of the server certificate PEM file.
   vii. In the Appliance TLS Certificate Key text box, paste the contents of certificate key.
   viii. In the Certificate Authority Certificate text box, paste the contents of the Certificate Authority (CA) file. To use a certificate that uses a chain of intermediate CAs, paste the contents of a certificate chain PEM file. The PEM file must include a chain of the intermediate CAs all the way down to the root CA.

Result
When you power the appliance back on, the TLS certificates are automatically applied.
Reinitialize the vSphere Integrated Containers Appliance

After you power on the vSphere Integrated Containers appliance for the first time, you are prompted to enter the vCenter Server credentials and Platform Services Controller settings. This allows the OVA installer to perform the tasks that initialize the appliance:

- Tag the appliance VM for Docker content trust
- Register the appliance with the Platform Services Controller
- Automatically install or upgrade the vSphere Integrated Containers plug-in for the vSphere Client.

After initialization, the vSphere Integrated Containers appliance welcome page should display a success message at the top of the page. In this case, no action is necessary.

If you do not see the success message, you can reinitialize the appliance. The appliance welcome page includes a button labeled **Re-Initialize the vSphere Integrated Containers Appliance**.

You should reinitialize the appliance in the following circumstances:

- The initialization of the appliance did not succeed and the appliance welcome page includes a red error alert instead of a green success alert. For example, you see the error Failed to locate VIC Appliance. Please check the vCenter Server provided and try again.
- You need to re-tag the appliance for Docker content trust. For more information, see **Re-Tag the vSphere Integrated Containers Appliance**.
- You need to update the details for the Platform Services Controller.
- You chose not to install or upgrade the vSphere Client plug-in when you installed or upgraded the appliance, and you now wish to do so.

**Procedure:**

1. In a browser, go to the vSphere Integrated Containers appliance welcome page.

   You can specify the address in one of the following formats:

   - vic_appliance_address
   - http://vic_appliance_address
   - https://vic_appliance_address:9443

   The first two formats redirect automatically to https://vic_appliance_address:9443. If the vSphere Integrated Containers appliance was configured to expose the file server on a different port, the redirect uses the port specified during deployment. If you specify HTTPS, you must include the port number in the address.

2. Scroll to the bottom of the page and click **Re-Initialize the vSphere Integrated Containers Appliance**.
3. Enter the vCenter Server address and the Single Sign-on credentials of a vSphere administrator account for the vCenter Server instance on which you deployed the appliance.
4. If vCenter Server is managed by an external Platform Services Controller, enter the FQDN and administrator domain for the Platform Services Controller.
   - If vCenter Server is managed by an embedded Platform Services Controller, leave the External PSC text boxes empty.
   - If the Platform Services Controller has changed since deployment, provide the new FQDN and administrator domain.

5. Enter the root password for the vSphere Integrated Containers appliance, that you set when you deployed the OVA.

6. To install or upgrade the vSphere Client plug-in, leave the **Install UI Plugun** checkbox selected, and click **Continue**.

7. Verify that the certificate thumbprint for vCenter Server is valid, and click **Continue** to initialize the appliance.

**Result**

You see a green success message on the vSphere Integrated Containers appliance welcome page. The reinitialization has performed some or all of the following tasks:

- Retagged the appliance VM for Docker content trust
- Updated the Platform Services Controller registration
- Automatically installed or upgraded the plug-in
Re-Tag the vSphere Integrated Containers Appliance

vSphere Integrated Containers Registry implements Docker content trust to sign images. As such, the vSphere Integrated Containers appliance requires a specific VM tag to identify it as a content trust source.

In some cases, you might need to re-tag the appliance VM, for example if the tag has been accidentally deleted, or if the tagging of the VM failed during the first initialization of the appliance. If the tagging of the VM failed during initialization, you see the error Failed to locate VIC Appliance. Please check the vCenter Server provided and try again in the appliance welcome page.

Procedure

1. In the Hosts and Clusters view of the vSphere Client right-click the OVA VM and select Tags & Custom Attributes > Remove Tag.
2. Check that the ProductVM tag is present in the list of tags and click Cancel.
3. If the ProductVM tag is missing, in a browser, follow the procedure in Reinitialize the vSphere Integrated Containers Appliance to re-tag the appliance.
4. After initialization, check in the vSphere Client that the ProductVM tag is present.
Update Platform Services Controller Registration

When you deploy the vSphere Integrated Containers appliance, you must register it with the VMware Platform Services Controller that manages the vCenter Server instance on which you deployed the appliance.

If the credentials for the Platform Services Controller change after you deployed the appliance, the appliance can no longer connect to vCenter Server. In this case, you must update the credentials with which the appliance is registered with the Platform Services Controller.

**NOTE:** To update the registration, you must log into the appliance VM and run commands manually. You cannot update the registration by using the Re-Initialize button on the vSphere Integrated Containers appliance welcome page.

**Procedure**

1. Use SSH to connect to the appliance VM as `root` user, using the root password that you specified during the OVA deployment.

   ```
 ssh root@vic_appliance_address
   ```

2. Run a command to register vSphere Integrated Containers Registry with the Platform Services Controller, using the new credentials.

   Specify `harbor` in the `--clientName` parameter and set the following parameters according to your vSphere environment:

   - `--tenant`: The user domain, for example, `vsphere.local`.
   - `--username`: A user account with administrator privileges, for example, `administrator@vsphere.local`. If the user account that you use has changed since you deployed the appliance, specify the new user account.
   - `--password`: The password for the vCenter Server user account, formatted appropriately to escape special characters in the shell. If the password has changed since you deployed the appliance, specify the new password.
   - `--domainController`: The FQDN of the Platform Service Controller instance. If the Platform Service Controller instance is hosted on the vCenter Server host, for example `https://$vCenterFQDN/psc`, the value for this parameter should just be the FQDN of the vCenter Server host.
   - `--admiralUrl`: The address of vSphere Integrated Containers Management Portal, for example `https://vic_appliance_IP:8282`. If the management portal address has changed since you deployed the appliance, specify the new address.
   - `--defaultUserPrefix`: (Optional) The prefix for the user names of the example users. If you did not change this during OVA deployment, the default is `vic`. If you specify `--defaultUserPrefix` you must also specify `--defaultUserPassword`.
   - `--defaultUserPassword`: (Optional) The password for the example users. The password must follow the rules set for vSphere. If you did not change this during OVA deployment, the default is `VicPro123`. If you specify `--defaultUserPassword` you must also specify `--defaultUserPrefix`. 

276
In the following example, parameters that you must update are highlighted in **bold**. Copy the other parameters as they are shown in the example.

```java
java -jar /etc/vmware/admiral/admiral-auth-psc-1.2.0-SNAPSHOT-command.jar
 --command=register
 --version=6.0
 --configDir=/etc/vmware/psc
 --clientName=harbor
 --tenant=yourdomain
 --username=administrator@yourdomain
 --password='p@ssw0rd'
 --domainController=psc_fqdn
 --admiralUrl=https://vic_appliance_IP:8282
 --defaultUserPrefix=vic
 --defaultUserPassword='VicPro!23'
```

3. Run the command again to register vSphere Integrated Containers Engine with the new credentials.

   Change the **--clientName** parameter to **engine**. Specify all of the other parameters with the same values as you used in the previous step.

```java
java -jar /etc/vmware/admiral/admiral-auth-psc-1.2.0-SNAPSHOT-command.jar
 --command=register
 --version=6.0
 --configDir=/etc/vmware/psc
 --clientName=engine
 --tenant=yourdomain
 --username=administrator@yourdomain
 --password='p@ssw0rd'
 --domainController=psc_fqdn
 --admiralUrl=https://vic_appliance_IP:8282
 --defaultUserPrefix=vic
 --defaultUserPassword='VicPro!23'
```

4. Run the command a third time to register vSphere Integrated Containers Management Portal.

   Change the **--clientName** parameter to **admiral**. Specify all of the other parameters with the same values as you used in the previous two steps.

```java
java -jar /etc/vmware/admiral/admiral-auth-psc-1.2.0-SNAPSHOT-command.jar
 --command=register
 --version=6.0
 --configDir=/etc/vmware/psc
 --clientName=admiral
 --tenant=yourdomain
```
--username=administrator@yourdomain
--password='p@ssw0rd'
--domainController=psc_fqdn
--admiralUrl=https://vic_appliance_IP:8282
--defaultUserPrefix=vic
--defaultUserPassword='VicPro!23'

5. After you have run the command 3 times, run the following command.

```
touch /registration-timestamps.txt
```

This command prevents the login window from reappearing on subsequent visits to the appliance welcome page.

**Result**

The appliance is registered with the Platform Services Controller with the new credentials. vSphere Integrated Containers services are available at https://vic_appliance_address:8282.
Check the Status of the vSphere Integrated Containers Services

You can check the status of the vSphere Integrated Containers services that run in the appliance by logging in to the vSphere Integrated Containers appliance. The following services run in the vSphere Integrated Containers appliance:

- vSphere Integrated Containers Registry service
- vSphere Integrated Containers Management Portal service
- The file server for vSphere Integrated Containers Engine downloads and installation of the vSphere Client plug-in
- The `vic-machine-server` service, that powers the Create Virtual Container Host wizard in the HTML5 vSphere Client plug-in

Prerequisites

You deployed the vSphere Integrated Containers appliance.

Procedure

1. Connect to the vSphere Integrated Containers appliance by using SSH.
2. Run one of the following commands to check the status of one of the vSphere Integrated Containers services:

   - vSphere Integrated Containers Registry:
     ```bash
 systemctl status harbor.service
     ```

   - vSphere Integrated Containers Management Portal services:
     ```bash
 systemctl status admiral.service
     ```

   - Embedded file server:
     ```bash
 systemctl status fileserver.service
     ```

   - `vic-machine-server`:
     ```bash
 systemctl status vic-machine-server.service
     ```

Result

The output shows the status of the service that you specified, as well as the most recent log entries.
<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active (running)</td>
<td>The service is running correctly.</td>
</tr>
<tr>
<td>inactive (failed)</td>
<td>The service failed to start.</td>
</tr>
<tr>
<td>inactive (dead)</td>
<td>The service is not responding.</td>
</tr>
</tbody>
</table>

**What to Do Next**

If the status is **inactive (failed)** or **inactive (dead)**, see [Restart the vSphere Integrated Containers Services](#).
Restart the vSphere Integrated Containers Services

You can restart the vSphere Integrated Containers services that run in the appliance by logging in to the vSphere Integrated Containers appliance. The following services run in the vSphere Integrated Containers appliance:

- vSphere Integrated Containers Registry service
- vSphere Integrated Containers Management Portal service
- The file server for vSphere Integrated Containers Engine downloads and installation of the vSphere Client plug-in
- The vic-machine-server service, that powers the Create Virtual Container Host wizard in the HTML5 vSphere Client plug-in

Prerequisites

You deployed the vSphere Integrated Containers appliance.

Procedure

1. Connect to the vSphere Integrated Containers appliance by using SSH.
2. Run one of the following commands to restart one of the vSphere Integrated Containers services:
   - vSphere Integrated Containers Registry:
     ```
 systemctl restart harbor.service
     ```
   - vSphere Integrated Containers Management Portal services:
     ```
 systemctl restart admiral.service
     ```
   - Embedded file server:
     ```
 systemctl restart fileserver.service
     ```
   - vic-machine-server:
     ```
 systemctl restart vic-machine-server.service
     ```
Recover the Root Password for the vSphere Integrated Containers Appliance

If you forget the root password for the vSphere Integrated Containers appliance, or need to change it after deployment, you can do so by using the GNU Grand Unified Bootloader (GRUB) edit menu in Photon OS.

**NOTE:** During the initial deployment of the appliance, the installer uses ovfenv to set the root password on first boot. Subsequent boots ignore the ovfenv field.

**Procedure**

1. In the vSphere Client, open a remote console for the appliance VM.
   
   It is recommended to use VMware Remote Console and not the Web Console.

2. When the Photon OS splash screen appears, press e to enter the GNU GRUB edit menu.
   
   The Photon OS splash screen only appears very briefly, which is why it is better to use Remote Console rather than the Web Console.

3. In the GNU GRUB edit menu, use the arrow keys to go to the end of the line that begins with linux.

4. Add rw init=/bin/bash to the end of the linux line to start a bash shell.

   ```
 linux /boot/$photon_linux root=$rootpartition $photon_cmdline $systemd_cmdline
 consoleblank=0 rw init=/bin/bash
   ```

5. Press the F10 key.

6. At the bash command prompt, enter passwd then enter and reenter a new root password for the appliance.

   The password must meet the minimum requirements that Photon OS 2.0 imposes.

   ```
 passwd
 New password:
 Retype new password:
 passwd: password updated successfully
   ```

7. At the command prompt, unmount the file system.

   ```
 umount /
   ```

8. Reboot the appliance.

   ```
 reboot -f
   ```

**Result**
You can use the new root password to log in to the vSphere Integrated Containers appliance.
Uninstall vSphere Integrated Containers

The process of uninstalling vSphere Integrated Containers depends on the way that you use the product. In general, you stop the running containers, delete the VCHs that you deployed, and delete the vSphere Integrated Containers virtual appliance. If you perform the three operations, no significant footprint stays in your environment. To make sure that no vSphere Integrated Containers elements persist, also unregister the vSphere Integrated Containers plug-in and delete the product-specific users from your Platform Services Controller.

Procedure

1. Stop any running containers on your VCHs.
2. Delete all VCHs in your environment.
   For information about the vic-machine delete command, see Delete Virtual Container Hosts
3. Delete any vSphere Integrated Containers virtual appliances that you deployed.
   For information about removing VMs from the datastore, see Remove VMs or VM Templates from vCenter Server or from the Datastore in the vSphere documentation.
4. Unregister the vSphere Integrated Containers plug-in from vCenter Server by using the Managed Object Browser.
   i. Log in to https://vCenter_Server_address/mob/?moid=ExtensionManager with vCenter Server administrator credentials.
   ii. In ExtensionManager, click unregisterExtension.
   iii. Enter com.vmware.vic for the extension key value, and click Invoke Method.
   iv. Verify that the result displays void and not an error message.
   v. Close the window.
   vi. Refresh the ExtensionManager page and verify that the extensionList entry does not include any com.vmware.vic related entries.
5. Clean up any vSphere Integrated Containers related users from your Platform Services Controller.
   i. Log in to https://Platform_Services_Controller_address/psc with vCenter Server administrator credentials.
   ii. If you created default users for your vSphere Integrated Containers instance, click Users and Groups, select the Management Portal (cloud) administrator user, the DevOps Admin user, and the Developer user, and click Delete for each of them.
   iii. Click the Solution Users tab, select the users that start with engine, admiral, and harbor, and click Delete for each of them.
6. Verify that no vSphere Integrated Containers VMDK files are left on your datastore.
7. Restart the vSphere Client service, to finalize the removal of the vSphere Integrated Containers plug-in.
   For information about restarting the client, see Restart the vSphere Client.
Troubleshooting vSphere Integrated Containers

This section includes information about how to access vSphere Integrated Containers logs, how to manage the appliance after deployment, and provides solutions for common problems that you might encounter during deployment and operation.

- Access vSphere Integrated Containers Logs
- Troubleshoot vSphere Integrated Containers Appliance Deployment
- vSphere Integrated Containers Plug-In Not Deploying Correctly
- Troubleshoot Virtual Container Host Deployment
- Troubleshoot Post-Deployment Operation
- Install Packages in the VCH
- Container VMs Orphaned After Upgrade
Access vSphere Integrated Containers Logs

You can access vSphere Integrated Containers logs for both the appliance and for each virtual container host, to help you to troubleshoot problems or to provide information to VMware support.

- Access Appliance Logs
- Access VCH Logs
Access and Configure Appliance Logs

You access the logs for vSphere Integrated Containers by using SSH to connect to the appliance. You can also access logs and configure log retention for each of the different vSphere Integrated Containers components. In most cases, it is sufficient to generate the support bundle, but advanced users can access individual logs if required.

Prerequisites

Make sure that SSH access to the appliance is enabled. To enable SSH access to the appliance, see Reconfigure the vSphere Integrated Containers Appliance.

Procedure

1. Use SSH to connect to the appliance as root user.

   ```
 $ ssh root@vic_appliance_address
   ```

   When prompted for the password, enter the appliance password that you specified when you deployed the appliance.

2. To create a complete log bundle for the appliance, run the `appliance-support.sh` script.

   ```
 /etc/vmware/support/appliance-support.sh --include-private --outdir <directory> --ignore-disk-space
   ```

   The script includes the following options:
   
   - `--include-private`: Includes files containing private values in the log bundle
   - `--outdir <directory>`: Directory to store the resulting log bundle
   - `--ignore-disk-space`: Ignore low disk space warnings for log bundle output

   Running this script creates a log bundle, `/storage/log/vic_appliance_logs_YYYY-MM-DD-00-01-00.tar.gz`, that you can supply to VMware support. This bundle includes the installation logs.

3. To see the startup logs for each of the vSphere Integrated Containers components, run the `journalctl` command.

   - vSphere Integrated Containers Registry:
     ```
 journalctl -u harbor
     ```

   - `vic-machine-server` service:
     ```
 journalctl -u vic-machine-server
     ```

   - vSphere Integrated Containers Management Portal:
Configuring Log Retention

1. To configure log retention for the registry services, edit the `/storage/data/harbor/harbor.cfg` file.

   $ vi /storage/data/harbor/harbor.cfg

   The default configuration allows 50 files, up to 200MB each per service.
   
   i. To set the maximum number of files used for storing logs per service, change the `log_rotate_count` property value to the desired number.
   
   ii. To set the maximum size in MB per file, change the `log_rotate_size` property value to the desired number.

2. To configure log retention for the `vic-machine-server` service, edit the `/etc/logrotate.d/vic-machine-server` file.

   The default configuration allows 10 files, up to 1GB each.

   $ vi /etc/logrotate.d/vic-machine-server

   i. To set the maximum number of files used for storing logs, change the `rotate` property value to the desired number.
   
   ii. To set the maximum size in GB per file, change the `size` property value to the desired number.

3. To configure log retention for the management portal, edit the `/etc/vmware/admiral/logging-vic.properties` file.

   The default configuration allows 5 files, up to 1GB each.

   $ vi /etc/vmware/admiral/logging-vic.properties

   i. To set the maximum number of files used for storing logs, change the `java.util.logging.FileHandler.count` property value to the desired number.
   
   ii. To set the maximum size in bytes per file, change the `java.util.logging.FileHandler.limit` property value to the desired number.

Log File Location

Depending on the component, navigate to the following locations to access the log files:

<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Log Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance</td>
<td><code>/var/log/vmware</code></td>
<td><code>/upgrade.log</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>adminserver.log</code>: Registry administration service</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>clair-db.log</code>: Clair database used for vulnerability scanning of images</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>clair.log</code>: Clair service used for vulnerability scanning of images</td>
</tr>
</tbody>
</table>
| vSphere Integrated Containers Registry | /storage/log/harbor | jobservice.log: Registry job service log
mysql.log: Embedded registry database
notary-db.log: Notary database by Docker Content Trust
notary-server.log: Notary server used by Docker Content Trust
notary-signer.log: Notary image signing service used by Docker Content Trust
proxy.log: Proxy service logs
registry.log: Registry service logs
ui.log: User interface logs |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>vic-machine-server service</td>
<td>/storage/log/vic-machine-server</td>
<td>vic-machine-server.log</td>
</tr>
<tr>
<td>vSphere Integrated Containers Management Portal</td>
<td>storage/log/admiral</td>
<td>xenonHost.0.log</td>
</tr>
</tbody>
</table>
Access Virtual Container Host Log Bundles

Virtual container hosts (VCHs) provide log bundles that you can download from the VCH Admin portal. To aid in troubleshooting errors, you can access and download different log bundles with container logs.

It is recommended that you collect the log bundles with container logs and no just the different log bundles unless unable to do so or otherwise instructed.

Collecting Log Bundles

1. Access the VCH Admin Portal at https://vch_address:2378. For more information about the VCH Admin portal, see VCH Administration Portal.
2. Depending on the error you are troubleshooting, you can download the following log bundles:
   a. Log Bundle contains logs that relate specifically to the VCH that you created.
   b. Log Bundle with container logs contains the logs for the VCH and also includes the logs regarding the containers that the VCH manages.

   NOTE: If the VCH is unable to connect to vSphere, logs that require a vSphere connection are disabled, and you see an error message. For information about accessing logs manually, see Collecting Logs Manually below.
3. Leave the browser open for the log bundle to download to the browser once the collection has finished.

Viewing Live Logs

See the Live logs (tail files) to view the current status of how components are running. Live logs can help you to see information about current commands and changes as you make them. For example, when you are troubleshooting an issue, you can see whether your command worked or failed by looking at the live logs.

You can view the following live logs:

1. **Docker Personality** is the interface to Docker. When configured with client certificate security, it reports unauthorized access attempts to the Docker server web page.
   
   The live logs are located in the https://vch_address:2378/logs/tail/docker-personality.log file
2. **Port Layer Service** is the interface to vSphere.
   
   The live logs are located in the https://vch_address:2378/logs/tail/port-layer.log file.
3. **Initialization & watchdog** reports:
   - Network configuration
   - Component launch status for the other components
   - Reports component failures and restart counts
At higher debug levels, the component output is duplicated in the log files for those components, so `init.log` includes a superset of the log data.

The live logs are located in the [https://vch_address:2378/logs/tail/init.log](https://vch_address:2378/logs/tail/init.log) file.

**NOTE:** This log file is duplicated on the datastore in a file in the endpoint VM folder named `tether.debug`, to allow the debugging of early stage initialization and network configuration issues.

4. **Admin Server** includes logs for the VCH admin server, may contain processes that failed, and network issues. When configured with client certificate security, it reports unauthorized access attempts to the admin server web page.

   The live logs are located in the [https://vch_address:2378/logs/tail/vicadmin.log](https://vch_address:2378/logs/tail/vicadmin.log) file.

Optionally, you can share the non-live version of the logs with administrators or VMware Support to help you to resolve issues.

Logs also include the `vic-machine` commands used during VCH deployment to help you resolve issues.

### Collecting Logs Manually

If the VCH Admin portal is offline, use `vic-machine debug` to enable SSH on the VCH and use `scp -r` to capture the logs from `/var/log/vic/`.

### Setting the Log Size Cap

The log size cap is set at 20MB. If the size exceeds 20 MB, vSphere Integrated Containers Engine compresses the files and saves a history of the last two rotations. The following files are rotated:

```
/var/log/vic/port-layer.log
/var/log/vic/init.log
/var/log/vic/docker-personality.log
/var/log/vic/vicadmin.log
```

vSphere Integrated Containers Engine logs any errors that occur during log rotation.

### Troubleshooting VCH Creation Errors

During a creation of a VCH, a log file named `vic-machine_<timestamp>_create_<id>.log` populates. You can find that file on the target datastore in a folder with the same name as the VCH that you specified for the `vic-machine create` command.
Troubleshoot vSphere Integrated Containers Appliance Deployment

This section provides solutions for common problems that you might encounter during deployment of the vSphere Integrated Containers appliance.

- Appliance Boot Errors
- Appliance Console Shows OVF Error on Boot
- Appliance Deployment Succeeds but Registry Services Do Not Start
- vSphere Integrated Containers Appliance VM Password Refused
- Browser Rejects Certificates with ERR_CERT_INVALID Error
- Registration with Platform Service Controller Fails
- Appliance Initialization Errors
- Access to Management Portal Fails
- Appliance Running Errors
Appliance Boot Errors

After you deploy the vSphere Integrated Containers appliance, you power it on and it boots. When it boots, the appliance uses user provided configuration and starts an SSH server and certain services.

Failures during the operating system boot are rare. The most common boot failure occurs because of changes to attached hard disks, especially during upgrade operations. Failures that occur after the OS is booted but before the Initialization stage are usually related to user customizations.

This section helps you to troubleshoot common network and console problems that you might encounter, or to provide information about boot failures to VMware support.

Network Errors

To aid with network errors, you can verify the following:

- Verify if the VM console of the deployed appliance shows an IP address and if the address contains the expected value based on DHCP or provided static IP settings.
- Verify if you have a route to the deployed appliance's IP address:
  
  ```
ping <vic_appliance_address>
  ```

  - If ping is successful, but SSH is not, check network firewall settings.
  - If ping is not successful, check network settings and continue with troubleshooting console errors.

Console Errors

To troubleshoot console errors, you should able to access the appliance using SSH and obtain debugging information.

Access the vSphere console for the appliance. Press `ALT + ->` to access the login prompt.

1. Log in as `root` user with the credentials that you provided in the OVA deployment customizations. If the deployment has failed to set your credentials, the default password is `VMw@re!23`.

2. Verify if any startup components failed to start by running the `systemctl list-units --state=failed` command.

   If there are any failed units, provide the output of the following commands to VMware Support:

   ```
 systemctl list-units --state=failed
   ```
   ```
 journalctl -u <unit name>
   ```
   ```
 ip addr show
   ```
   ```
 ip route show
   ```

3. Verify if the IP address contains the expected value based on DHCP or provided static IP settings by running the `ip addr show` command.

4. Verify if the default route is valid by running the `ip route show` command.
5. Verify if you can access the default gateway by pinging the default gateway.

   ping <default gateway IP>

Obtain the default gateway IP from the `ip route show` command output.

- If you cannot access the default gateway, check your network settings. Attach the appliance to a network that has a valid route between your client and the appliance.
- If you can access the default gateway, verify the routing configuration between the client that is unable to use SSH to access the appliance.

6. If you are still unable to access the appliance, provide the output of the following commands to VMware Support:

   - `systemctl list-units --state=failed` For each failed unit: `journalctl -u <unit name>`
   - `ip addr show`
   - `ip route show`

**Support Information**

Provide the following information to VMware Support if you encounter problems during the boot stage:

- Specify if the deployment of the appliance is a new one or an upgrade. If it is an upgrade, specify the previous version of the appliance.
- Specify if you made any changes to the disk configuration of the appliance and what those changes are.
- Verify if you see the page at https://vic_appliance_address:9443.
  - If you are not able to see the page, verify if you provided custom TLS certificates during deployment.
  - If you are able to see the page, verify if the format of the certificate is correct. For more information, see vSphere Integrated Containers Appliance Certificate Requirements.

Run the `journalctl -u fileserver` and provide the output to VMware Support.

- Verify if you are able to use SSH to access the appliance.
  - If you are not able to access the appliance, see Network Errors.
  - If you are able to access the appliance, obtain an appliance support bundle. For more information, see Access and Configure Appliance Logs.
Appliance Console Shows OVF Error on Boot

When you boot the vSphere Integrated Containers appliance, the VM console screen displays the error "unable to unmarshal ovf environment".

Problem

When you see this error in the appliance VM console, the appliance is in an unusable state.

Cause

The ovfenv data for the appliance is corrupted or missing.

Solution

Perform the following steps to rewrite corrupted or missing ovfenv data.

1. In the vSphere Client, right-click the appliance VM and select Power > Shut Down Guest OS.
2. Right-click the appliance again and select Edit Settings.
   - In the Flex-based vSphere Web Client, select vApp Options and click OK.
   - In the HTML5 vSphere Client, select VM Options and click OK.
3. Verify under Recent Tasks that a Reconfigure virtual machine task has run on the appliance.
4. Power on the appliance.
5. Open the appliance VM console to verify that the error message does not appear.
Appliance Deployment Succeeds but Registry Services Do Not Start

After an apparently successful deployment, any views in vSphere Integrated Containers Management Portal that relate to vSphere Integrated Containers Registry do not render correctly and are unusable.

Problem

Deployment of the vSphere Integrated Containers Appliance succeeds, but when you log into vSphere Integrated Containers Management Portal, the following views do not render correctly and cannot be used:

- Administration > Configuration
- Administration > Global Registries
- Certain tabs in Administration > Projects > Project

If you check the service status for vSphere Integrated Containers Registry, you see that harbor.service is in a constant loop of starting, running, and stopping.

Cause

You used a version of the HTML5 vSphere Client that pre-dates vCenter Server 6.7 update 1 to deploy the appliance OVA. Older versions of the HTML5 client do not prevent you from deploying OVA files, but due to an issue in older versions of the client, the vSphere Integrated Containers Registry service is assigned to the incorrect port during deployment. This prevents the service from running.

Solution

Use the Flex-based vSphere Web Client to redeploy the appliance OVA. Alternatively, upgrade vCenter Server to version 6.7 update 1 and use the HTML5 vSphere Client to redeploy the appliance OVA.
vSphere Integrated Containers Appliance VM
Password Refused

After successfully deploying the vSphere Integrated Containers appliance OVA, you cannot use SSH to log in to the vSphere Integrated Containers appliance VM.

Problem

The root password that you specified during the OVA deployment is refused when you attempt to log in to the appliance by using SSH or the virtual machine console.

Cause

A startup process failed on the first boot of the appliance. This caused the appliance password that you specified during deployment of the OVA not to be set.

Solution

1. Use SSH or the VM console to log in to the appliance VM as root.

   $ ssh root@vic_appliance_address

2. When prompted, enter the default password.

   2RQRZ83179N6zpvZNX6

3. When prompted to change the root password, set it to the same password that you set during the OVA deployment.

   If the password you used during OVA deployment is rejected, set a different password. For example, it might be rejected because it is based on dictionary words. In this case, you can chose a different, throwaway password to get past this step.

4. When you are logged in, reboot the appliance.

   $ reboot now

Result
After the reboot, the password is set to the one that you specified during OVA deployment, even if you had to specify a different, throwaway password in order to log in. When the initial password that you specified during OVA deployment expires, the next time that you log in you must set a new password that complies with the strength check.
Browser Rejects Certificates with **ERR_CERT_INVALID** Error

Attempts to connect to vSphere Integrated Containers web interfaces fail with certificate errors in Google Chrome browsers.

**Problem**

When you attempt to access the vSphere Integrated Containers appliance welcome page, vSphere Integrated Containers Management Portal, or the administration portal for a virtual container host (VCH), Google Chrome rejects the connection with an **ERR_CERT_INVALID** error and a warning similar to the following:

*Web_address normally uses encryption to protect your information. When Google Chrome tried to connect to web_address this time, the website sent back unusual and incorrect credentials...*

*You cannot visit web_address right now because the website sent scrambled credentials that Google Chrome cannot process...*

This issue only affects Google Chrome. Other browsers do not report certificate errors.

**Cause**

You have already accepted a client certificate or a generated Certificate Authority (CA) for a previous instance of the vSphere Integrated Containers appliance or for a VCH that had the same FQDN or IP address as the new instance.

**Solution**

1. Search the keychain on the system where the browser is running for client certificates or CAs that are issued to the FQDN or IP address of the vSphere Integrated Containers appliance or VCH.

   Auto-generated vSphere Integrated Containers appliance and VCH certificates are issued by **Self-signed by VMware, Inc**.

2. Delete any client certificates or CAs for older instances of vSphere Integrated Containers appliances or VCHs.

3. Clear the browser history, close, and restart Chrome.

4. Connect to the vSphere Integrated Containers appliance welcome page, vSphere Integrated Containers Management Portal, or VCH Administration portal again, verify the certificate, and trust it if it is valid.

For information about how to verify certificates for the vSphere Integrated Containers appliance, see [Verify and Trust the vSphere Integrated Containers Appliance Certificate](#).
Registration with Platform Service Controller Fails

When you deploy the vSphere Integrated Containers appliance and register it with the Platform Services Controller (PSC), the registration process fails.

Problem

The PSC registration causes errors during setup and the registration logs contain one of the following errors:

- Exception in thread "main" com.vmware.admiral.auth.idm.psc.saml.sso.admin.SsoAdminClientException: Can not retrieve the SSO SSL certificate chain. Caused by: java.net.UnknownHostException: xyz
- Exception in thread "main" com.vmware.admiral.auth.idm.psc.saml.sso.admin.SsoAdminClientException: General SSO failure. Invalid host, port or tenant.
- Exception in thread "main" com.vmware.admiral.auth.idm.psc.saml.sso.admin.SsoAdminClientException: Provided credentials are not valid.
- Exception in thread "main" com.vmware.xenon.common.LocalizableValidationException: 'xyz' is required

To access the PSC logs, log into the appliance VM and run the `journalctl -u fileserver` command.

Cause

Some of the parameters provided during PSC registration might be wrong or missing.

Solution

Perform the following steps to register the appliance with the PSC:

1. Verify that you have provided all required parameters and that they are correct.
2. Make sure that the registered PSC instance is accessible from the deployed OVA.
3. Try the registration process again.
4. After a successful registration, verify if the list of solution users for the PSC instance contains three new solution users similar to the following:
   - Solution User for admiral: admiral-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
   - Solution User for engine: engine-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
   - Solution User for harbor: harbor-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

For an external PSC, you can see the users by logging into `https://psc_address/psc`.

Note: In case of multiple successful registrations, the solution users that are in use are the newest ones. You can remove the older ones from the PSC instance and from the following configuration files of the three components:

- admiral: `/etc/vmware/psc/admiral/psc-config.properties`
- engine: /etc/vmware/psc/engine/psc-config.properties
- harbor: /etc/vmware/psc/harbor/psc-config.properties
Appliance Initialization Errors

If you have reached the appliance initialization stage, it means that you can successfully view the appliance welcome page at https://vic_appliance_address:9443. The appliance is ready to accept initialization information.

Failures during initialization are most often related to Platform Services Controller (PSC) authentication and networking. It is important to determine whether PSC registration completed successfully.

This section helps you to troubleshoot initialization problems that you might encounter or to provide information about initialization failures to VMware Support.

To aid with initialization errors, verify the following:

1. Verify if you see can the page at https://vic_appliance_address:
   - If you are able to see the page after providing the initialization information, verify if you can see the green success alert
     - If yes, then the appliance has initialized.
     - If you are able to see the page with a red error alert instead of a green success alert, note the error message.
     - If the error message is Failed to register with PSC. Please check the PSC settings provided and try again, verify the PSC settings and use the Re-initialize button to try again.
     - Check the clock skew between the appliance and the PSC that you have provided.
     - For more information on how to troubleshoot clock skew, see Connections Fail with Certificate or Platform Services Controller Token Errors
     - Provide the error message to VMware Support and continue with the SSH verification.
   - If you are not able to see the page, verify the following:
     - Verify if the vSphere client can connect to the appliance and is not blocked by network policy or architecture.
     - If there are TLS handshake errors, check for clock skew between the client and appliance and if you are using a browser that supports modern TLS ciphers
     - Verify whether you provided custom TLS certificates.
     - If you have provided custom TLS certificates, check whether the VM console displays the correct SHA1 fingerprint for the certificate. If you have provided the correct values, then continue with the SSH verification. If the VM Console does not display the correct fingerprint, then verify if you provided correct formatting and values for the fields in the customer certificates. Continue with the SSH verification.
     - If you have not provided custom TLS certificates, continue with SSH verification.

2. Verify if you tried to initialize the vSphere Integrated Containers appliance by entering information in the welcome page.
   - If yes, verify if you can see the green success alert.
     - If you can see the green success alert, continue with the SSH verification.
If you cannot see the message, then the initialization has not been completed. If repeated attempts do not display a green success alert, continue with SSH verification.

- If you have not entered information in the welcome page, enter the appropriate information when prompted. Make sure that the green success alert appears at the top of the vSphere Integrated Containers welcome page.

3. If you tried to initialize the appliance by using the initialization API, provide the following information to VMware Support:

- The `curl` command that you ran.
- The response that you received while executing the command.

For more information, see Initialize the Appliance by Using the Initialization API.

4. Verify if you are able to use SSH to access the appliance.

- If you are not able to access the appliance, see Network Errors.
- If you are able to access the appliance, obtain an appliance support bundle. For more information, see Access and Configure Appliance Logs.
- Run the `systemctl status fileserver` command. If this operation is running and you are not able to view the webserver in your browser, perform the following checks:

  - Check the network configuration between the appliance and the client. Verify if the client or appliance using a 172.16.0.0/16 IP address.
  - Run the `journalctl -u fileserver` command.

    You should be able to see the webserver logs from your client's requests to the welcome page.

    If there are TLS handshake errors, check for clock skew between the client and appliance and verify that you are using a browser that supports modern TLS ciphers.

5. If you have PSC registration errors, see Registration with Platform Service Controller Fails
Access to Management Portal Fails

After successfully registering with the Platform Services Controller (PSC), access to the vSphere Integrated Containers Management Portal fails.

Problem

The vSphere Integrated Containers Management Portal logs contain stack traces with any of the following errors:

```
PscSettings : java.net.UnknownHostException: xyz
java.lang.IllegalArgumentException: PscSettings : xyz
[redirectToSamlSso][Could not generate redirect URL: java.lang.IllegalStateException:
SsoManager has not been initialized
...
```

```
PscSettings : java.net.SocketTimeoutException: connect timed out
java.lang.IllegalArgumentException: PscSettings : connect timed out
[redirectToSamlSso][Could not generate redirect URL: java.lang.IllegalStateException:
SsoManager has not been initialized
...
```

To access the logs for vSphere Integrated Containers Management Portal, navigate to /storage/log/admiral/.

Causes

The errors could occur because of any of the following reasons:

- Some of the parameters provided while registering with the PSC might be wrong
- The parameters that were valid during the PSC registration process or from the appliance are no longer valid now.
- The parameters are not valid from any of the containers running within the appliance, for example, from the vSphere Integrated Containers Management Portal or the vSphere Integrated Containers Registry.

Solution

1. Verify that the PSC registration was successful and that the logs do not have error messages. If the registration was not successful, try the process again. For more information see Registration with Platform Service Controller Fails.
2. Make sure that the registered PSC instance is accessible from the deployed appliance and from all the containers running within the appliance.
3. If the Management Portal was running during the PSC registration, restart the Management Portal and the vSphere Integrated Containers Registry after the registration process is complete.

   For more information about restarting services, see Restart the vSphere Integrated Containers Services.
Appliance Running Errors

If you have reached the appliance running stage, it means that you have successfully initialized the appliance and can see the green success alert on the appliance welcome page. After the vSphere Integrated Containers Management Portal and vSphere Integrated Containers Registry start, you can access the vSphere Integrated Containers Management Portal.

This section helps you to troubleshoot appliance running problems that you might encounter or to provide information about running failures to VMware support.

For running failures that are related to vSphere Integrated Containers Management Portal and vSphere Integrated Containers Registry functionality, see Troubleshoot Post-Deployment Operation.

To aid in initialization errors, provide the following information to VMware Support:

1. If you are using appliance version 1.3.1 or later and are able to connect to the appliance using SSH, obtain an appliance support bundle.
   For more information, see Access and Configure Appliance Logs

2. Run the following commands to verify if the vSphere Integrated Containers Management Portal and vSphere Integrated Containers Registry are running and provide the output to VMware Support:

   ```
 systemctl status admiral
 journalctl -u admiral
 systemctl status harbor
 journalctl -u harbor
   ```

3. If vSphere Integrated Containers Management Portal is not running and `systemctl status get_token` shows that the service failed, run the `journalctl -u get_token` command to see the error logs.

   If the logs show errors related to Platform Services Controller (PSC) token Errors clock skew, there might be clock skew between the appliance and the PSC.

   For more information see Connections Fail with Certificate or Platform Services Controller Token Errors

The appliance receives NTP configuration from DHCP by default. If DHCP is not used, set time synchronization by one of following methods:

- Synchronize time in guests deployed from OVF templates. To synchronize time, perform the following steps:
  i. Open the vSphere Client and connect to vCenter Server.
  ii. Right-click the virtual machine you deployed from OVF and click Edit Settings > Options > VMware Tools.
  iii. Under Advanced, select Synchronize guest time with host and click OK.
  iv. Right-click the appliance VM and select Power > Shut Down Guest OS.
  v. Power on the appliance.
**Note**: Do not reboot the appliance.

- Configure NTP directly in the appliance VM.
  
  i. Use SSH to connect to the vSphere Integrated Containers appliance as root user.

      ssh root@vic_appliance_address

  ii. Enable NTP in the appliance.

      timedatectl set-ntp true

  iii. Optionally, customize the NTP servers by editing the `/etc/systemd/timesyncd.conf` file.

4. If the vSphere Integrated Containers Management Portal interface displays the `SsoManager has not been initialized at runtime`, see Access to Management Portal Fails.

5. If the vSphere Integrated Containers Management Portal is not running, verify if you provided custom TLS certificates during deployment.
   
   - If you have provided custom TLS certificates, verify if the format of the certificate is correct. For more information, see vSphere Integrated Containers Appliance Certificate Requirements.
   
   - Run the `journalctl -u admiral` command and provide the output to VMware Support.
Appliance Welcome Page Error

When you provide a custom certificate while deploying a vSphere Integrated Containers appliance, the Welcome Page does not display.

Problem

You can use SSH to access the appliance, but the file server fails to start with the `systemctl status fileserver` error.

Cause

The custom certificate that you provided has an encrypted private key.

Solution

Provide a custom certificate with an unencrypted private key.

Perform the following steps to modify the custom certificate:

1. In the vSphere Client, right-click the appliance VM and select Power > Shut Down Guest OS.
2. Edit the settings with which you deployed the appliance.
   - In the Flex-based vSphere Web Client, right-click the appliance again, select Edit Settings > vApp Options.
   - In the HTML5 vSphere Client (vCenter Server 6.7 update 1 and later), select the appliance VM, then select Configure > vApp Options and scroll to the Properties section.
3. Under Appliance Configuration, specify the a custom certificate key in unencrypted PEM encoded PKCS#1 or unencrypted PEM encoded PKCS#8 format.
4. Power on the appliance.
5. Verify that you can see the vSphere Integrated Containers Appliance Welcome Page.
vSphere Integrated Containers Plug-In Not Deploying Correctly

After you have installed the plug-in for vSphere Integrated Containers, the HTML5 vSphere Client plug-in appears but is empty, or the plug-in does not appear at all in one or both of the HTML5 vSphere Client or the Flex-based vSphere Web Client.

Problem

The UI plug-in installer reported success, but you experience one of the following problems:

- The HTML5 plug-in appears in the vSphere Client, but the vSphere Integrated Containers Summary, Virtual Container Hosts, and Containers tabs are empty.
- The plug-in does not appear in the client at all.

Logging out of the client and logging back in again does not resolve the problem.

Causes

If the vSphere Integrated Containers plug-in appears in the HTML5 client but the tabs are empty, you are not running the correct version of vCenter Server 6.5.0. The vSphere Integrated Containers HTML5 plug-in requires vCenter Server 6.5.0d or later.

If the plug-in does not appear at all:

- A previous attempt at installing the vSphere Integrated Containers plug-in failed, and the failed installation state was retained in the client cache.
- You installed a new version of the vSphere Integrated Containers plug-in that has the same version number as the previous version, for example a hot patch.
- You might be encountering an SSL certificate mismatch issue. This can occur if the root CA on the vCenter Server Virtual Appliance is updated, either by upgrading to a newer build of vSphere or by running the VMCA Certificate Manager.

Solutions

- If the vSphere Integrated Containers plug-in appears in the HTML5 client but the tabs are empty, upgrade vCenter Server to version 6.5.0d or later.
- If the plug-in does not appear at all, see the section below to restart the vSphere Client services.
- If the plug-in still does not appear after restarting the vSphere Client services, see https://kb.vmware.com/kb/52540.

Restart the vSphere Client Services
You restart the Flex-based vSphere Web Client or the HTML5 vSphere Client in different ways.

**Restart the HTML5 Client from the Flex-based vSphere Web Client**

1. Log into the Flex-based vSphere Web Client.
2. Go to Administration > System Configuration > Services.
3. Right-click VMware vSphere Client and select Restart.

You cannot restart the Flex-based vSphere Web Client from the Flex-based client or from the HTML5 vSphere Client.

**Restart the HTML5 Client on vCenter Server on Windows**

1. Log into the Windows system on which vCenter Server is running.
2. Open a command prompt as Administrator.
3. Use the `service-control` command-line utility to stop and then restart the vSphere Client service.

   ```
 "C:\Program Files\VMware\vCenter Server\bin\service-control" --stop vsphere-ui
 "C:\Program Files\VMware\vCenter Server\bin\service-control" --start vsphere-ui
   ```

**Restart the Flex Client on vCenter Server on Windows**

1. Log into the Windows system on which vCenter Server is running.
2. Open a command prompt as Administrator.
3. Use the `service-control` command-line utility to stop and then restart the vSphere Client service.

   ```
 "C:\Program Files\VMware\vCenter Server\bin\service-control" --stop vsphere-client
 "C:\Program Files\VMware\vCenter Server\bin\service-control" --start vsphere-client
   ```

**Restart the HTML5 Client on a vCenter Server Appliance**

1. Use SSH to log in to the vCenter Server Appliance as root.
2. Use the `service-control` command-line utility to restart the vSphere Client service.

   ```
 service-control --stop vsphere-ui && service-control --start vsphere-ui
   ```

**Restart the Flex Client on a vCenter Server Appliance**

1. Use SSH to log in to the vCenter Server Appliance as root.
2. Use the `service-control` command-line utility to stop the vSphere Web Client service.

   ```
 service-control --stop vsphere-client && service-control --start vsphere-client
   ```
Troubleshoot Virtual Container Host Deployment

This section provides solutions for common problems that you might encounter during the deployment of virtual container hosts (VCHs).

- VCH Deployment Fails with Firewall Validation Error
- VCH Deployment Times Out
- VCH Deployment Fails with a Certificate Verification Error
- VCH Deployment Fails with Missing Common Name Error Even When TLS Options Are Specified Correctly
- VCH Deployment Fails with Certificate cname Mismatch
- VCH Deployment Fails with Docker API Endpoint Check Failed Error
- VCH Deployment with a Shared NFS Datastore Fails with an Error About No Single Host Being Able to Access All Datastores
- VCH Does Not Initialize Correctly
VCH Deployment Fails with Firewall Validation Error

When you deploy a virtual container host (VCH), deployment fails because firewall port 2377 is not open on the target ESXi host or hosts.

Problem

Deployment fails with a firewall error during the validation phase:

```
Firewall must permit dst 2377/tcp outbound to the VCH management interface
```

Cause

ESXi hosts communicate with the VCHs through port 2377 via Serial Over LAN. For deployment of a VCH to succeed, port 2377 must be open for outgoing connections on all ESXi hosts before you run `vic-machine create`. Opening port 2377 for outgoing connections on ESXi hosts opens port 2377 for inbound connections on the VCHs.

Solution

The `vic-machine` utility includes an `update firewall` command, that you can use to modify the firewall on the ESXi host or the ESXi hosts in a cluster. For information about how to use the `update firewall` command, see Open the Required Ports on ESXi Hosts.
VCH Deployment Times Out

When you attempt to deploy a virtual container host (VCH), the operation times out.

Problem

Deployment fails with a timeout error that states that the context deadline has been exceeded.

```
Failed to power on appliance context deadline exceeded. Exiting...
vic-machine-linux failed: Create timed out:
if slow connection, increase timeout with --timeout
```

Causes

This error can have different causes:

- The connection between the system on which you are running `vic-machine` and vCenter Server is slow. The upload of the ISO files exceeds the default 3 minute timeout.
- The upload of the ISO files succeeds but the VCH fails to obtain an IP address.
- The VCH obtained an IP address, but the VCH service does not start or the VCH cannot connect to the Docker API.

Solutions

1. Set the `vic-machine --timeout` option to allow more time for the ISOs to upload.
   
   For example, set `--timeout 10m` or `--timeout 20m`.

2. If the ISO upload succeeds with a longer timeout period but the operation still times out, check the DHCP service to make sure than an IP address is available for the VCH.

3. If the DHCP service is working and the operation still times out, see VCH Deployment Fails with Docker API Endpoint Check Failed Error.
VCH Deployment Fails with a Certificate Verification Error

When you use `vic-machine create` to deploy a virtual container host (VCH), the deployment fails with a certificate verification error, noting that it failed to create validator.

### Problem

Deployment of the VCH fails during the validation of the configuration that you provided:

```
Failed to verify certificate for target=vcenter_server_or_esxi_host
(thumbprint=vc_or_esxi_cert_thumbprint)
Create cannot continue: failed to create validator
vic-machine-platform.exe failed: x509: certificate signed by unknown authority
```

### Cause

The certificate on the vCenter Server or ESXi host that you specified in the `--target` option cannot be validated on the client system.

### Solution

If the certificate was signed by a certificate authority (CA), add that CA to the trusted roots for the client system.

If the CA should not be generally trusted, or the certificate is self-signed, obtain the thumbprint of the vCenter Server instance or ESXi host. For information about how to obtain the certificate thumbprint either before running `vic-machine` or to verify a thumbprint from a `vic-machine` error message, see [Obtain vSphere Certificate Thumbprints](#).

- If the server is trusted and you did not specify the certificate thumbprint when you ran `vic-machine create`, run `vic-machine create` again, specifying the `--thumbprint` option.
- If a thumbprint that you specified in `--thumbprint` does not match the server certificate reported in the error message:
  1. Remove the thumbprint from the `vic-machine create` command. **WARNING:** A thumbprint mismatch could mean the server you have connected to is not the intended target and might have been spoofed.
  2. Validate that the change in server certificate is legitimate
  3. Re-run `vic-machine create`, specifying a new thumbprint in the `--thumbprint` option.

Use upper-case letters and colon delimitation in the thumbprint. Do not use space delimitation.
VCH Deployment Fails with Missing Common Name Error Even When TLS Options Are Specified Correctly

If you deploy a virtual container host (VCH) and you have specified one of the `vic-machine create --tls-cname`, `--no-tlsverify`, or `--no-tls` options, or you set a static IP address on the client network, the deployment fails with an error about the certificate Common Name being missing.

Problem

Deployment fails during the validation of the configuration that you provided, even if you did specify a TLS option or you set a static IP address on the client network. For example:

```bash
$ vic-machine-windows create
--target 'Administrator@vsphere.local:password'@vcenter_server
--bridge-network vic bridge --no-tls
Installing VCH
[...]
Common Name must be provided when generating certificates for client authentication:
[...]
Create cannot continue: unable to generate certificates

vic-machine-windows.exe failed: provide Common Name for server certificate
```

If you include a TLS option at the beginning of the `vic-machine create` command rather than the end, you see the following error:

```bash
$ vic-machine-windows create
--target 'Administrator@vsphere.local:password'@vcenter_server
--no-tls
--bridge-network vic bridge
Installing VCH
[...]
Unknown argument: bridge

vic-machine-windows.exe failed: invalid CLI arguments
```

Cause
String values that you provided for certain options contain spaces or special characters that you did not escape with quotations marks. The `vic-machine create` input validator validates the arguments that you provide only as far as the argument that includes the space or special character. If you specify the TLS option before the argument with the space or special character, `vic-machine create` throws the correct error message. However, if you specify the TLS option after the argument that includes the space or special character, the `vic-machine create` validator stops before it reaches the TLS option, and so throws the error about the missing Common Name.

**Solution**

Wrap any arguments that contain spaces or special characters in single quotation marks (') on Mac OS and Linux and in double quotation marks (") on Windows.

Option arguments that might require quotation marks include the following:

- User names and passwords in `--target`, or in `--user` and `--password`.
- Datacenter names in `--target`.
- VCH names in `--name`.
- Datastore names and paths in `--image-store` and `--volume-store`.
- Network and port group names in all networking options.
- Cluster and resource pool names in `--compute-resource`.
- Folder names in the paths for `--tls-cert-path`, `--tls-server-cert`, `--tls-server-key`, `--appliance-iso`, and `--bootstrap-iso`. 
VCH Deployment Fails with Certificate Cname Mismatch

When you use `vic-machine create` to deploy a virtual container host (VCH), the deployment fails with an error about the certificate `cname` value.

Problem

Deployment fails during the validation of the configuration that you provided:

```
Provided cname does not match that in existing server certificate: cname
Unable to load certificates: cname option doesn't match existing server certificate
in certificate path path_to_certificate
```

Cause

`vic-machine create` attempts to re-use certificates that it finds in `--tls-cert-path`. The default value of `--tls-cert-path` derives from the value that you specify in `--name`. If you are deploying a VCH from the same location and with the same name as a previous VCH, `vic-machine create` reuses the old certificates. This behavior is intentional, to allow you to easily redeploy a VCH without requiring you to re-issue client certificates to users.

Before reusing the existing certificates, `vic-machine` confirms that the existing certificate is valid given the options supplied for the new deployment. The options that influence this in order of priority are:

- `--tls-cname` if specified, or
- `--client-ip-address`, or
- `--public-ip-address` if the client and public network roles share an interface.

The error message means that the existing certificate has a Common Name attribute that differs from the value derived from the options detailed above.

Solution

- To reuse the certificates directly, change `--tls-cname`, `--client-ip-address`, or `--public-ip-address` to match the Common Name in the existing certificate.

- If you want to reuse the Certificate Authority so that client certificates remain valid, but you need to provide a different IP address:
  1. Manually generate the server certificates by using `openssl`, signing them with the existing CA.
  2. Use the `--tls-server-cert` and `--tls-server-key` options to pass the newly generated certificates to `vic-machine create`.
If you do not want to reuse the certificates, choose one of the following options:

- Change the location from which you run `vic-machine`. This alters the default `--tls-cert-path`.
- Change the value of `--name`. This alters the default `--tls-cert-path`.
- Specify `--tls-cert-path` explicitly.
- Delete the existing certificates from `--tls-cert-path`
VCH Deployment Fails with Docker API Endpoint Check Failed Error

When you deploy a virtual container host (VCH), deployment fails because vSphere Integrated Containers cannot contact the Docker API endpoint.

Problem

Deployment fails with the error:

Docker API endpoint check failed:
API may be slow to start - try to connect to API after a few minutes:
    Run docker -H 192.168.218.160:2376 --tls info
    If command succeeds, VCH is started. If command fails, VCH failed to install - see documentation for troubleshooting.

Cause

During deployment, vSphere Integrated Containers checks that the endpoint VM is reachable from Docker clients. If this check fails, deployment fails with an error. This error can be caused by the Docker API being slow to start or because it has failed to start.

Solution

The solution to choose depends on whether the API is slow to start or whether it failed to start.

Docker API is Slow to Start

Wait for a few minutes, then run the `docker info` command to test the responsiveness of the Docker API.

If `docker info` succeeds, it shows information about the VCH, including confirmation that the storage driver is vSphere Integrated Containers.

Storage Driver: vSphere Integrated Containers version Backend Engine

This output means that the VCH is running correctly and can now accept Docker commands.

If `docker info` times out, it means that the Docker API did not start.

Docker API Did Not Start
If the Docker API was not responsive when you ran `docker info`, download the VCH log bundle and examine the logs to determine why the deployment failed. Collecting the vSphere log bundle might also be useful for troubleshooting.

- For information about how to download VCH logs by using the VCH Admin Portal, see [Access the VCH Admin Portal in vSphere Integrated Containers Engine Administration](#).
- For information about how to collect VCH logs manually, see [Access vSphere Integrated Containers Engine Log Bundles in vSphere Integrated Containers Engine Administration](#).
VCH Deployment with a Shared NFS Datastore Fails with an Error About No Single Host Being Able to Access All Datastores

Deploying a virtual container host (VCH) to a cluster, and specifying a shared NFS datastore as the image store, fails with the error 

No single host can access all of the requested datastores.

Problem

This error occurs even if all of the hosts in the cluster do appear to have access to the shared NFS datastore.

Cause

VCHs require datastores to be writable. The shared NFS datastore is possibly mounted as read-only.

Solution

To see whether a datastore is writable or read-only, consult mountInfo in the Managed Object Browser (MOB) of the vCenter Server instance to which you are deploying the VCH.

1. Go to https://vcenter_server_address/mob/
2. Click content.
3. Click group-xx (Datacenters) in the rootFolder row.
4. Click the managed object reference (MoRef) of your datacenter in the childEntity row.
5. Click the MoRef of the shared NFS datastore in the datastore row.
6. Click the DatastoreHostMount link in the host row.
7. Click mountInfo and check the accessMode value.
8. If the accessMode value is readOnly, unmount the datastore from vCenter Server and remount it with readWrite permissions.
VCH Does Not Initialize Correctly

A virtual container host (VCH) does not initialize correctly after editing in ESXi host client.

Problem

After you edit a VCH on the ESXi host client, it fails to initialize correctly. After you save and restart the endpointVM, the encryption key is lost and the endpointVM does not initialize correctly.

Cause

The `guestinfo.ovfEnv` key is used to store an encryption key for the vSphere credentials and server certificate private key. If you use an ESX host client to edit a running endpointVM, clicking on `Save` causes the `guestinfo.ovfEnv` key to convert to a volatile key, even if no changes were made to the VM config.

Solution

Do not use the ESXi host client to edit a running endpointVM directly. Instead, use the vCenter client or power off the endpointVM before editing.
Troubleshoot Post-Deployment Operation

This section provides solutions for common problems that you might encounter when using vSphere Integrated Containers Management Portal or virtual container hosts (VCHs) after deployment.

- Connections Fail with Certificate or Platform Services Controller Token Errors
- Some Users Cannot Access vSphere Integrated Containers Services
- Default Volume Store Error
- Deleting or Inspecting a VCH Fails with a Not a VCH or Resource Pool Not Found Error
- Logging in to vSphere Integrated Containers Registry from Docker Fails
- Pulling Images into VCHs Fails with Image Store Error
- Deployment of Container that supports DHCP Network Fails
Connections Fail with Certificate or Platform Services Controller Token Errors

Connections to virtual container hosts (VCHs) that use full TLS authentication with trusted Certificate Authority (CA) certificates fail with certificate errors. Connections to vSphere Integrated Containers Management Portal fail with Platform Services Controller token errors.

Problem

- **vic-machine** operations on a VCH result in a "bad certificate" error:

  Connection failed with TLS error "bad certificate"
check for clock skew on the host
Collecting host-227 hostd.log
vic-machine-windows.exe failed: tls: bad certificate

  **NOTE:** **vic-machine** tolerates a 1 day skew. A skew of 1 day might result in a different certificate error than time skew.

- Connections to the VCH Admin portal for the VCH fail with an **ERR_CERT_DATE_INVALID** error.
- Connections to the VCH from Docker clients fail with a **bad certificate** error.
- Connections to vSphere Integrated Containers Management Portal fail with Platform Services Controller token errors.

Cause

There is potentially a clock skew between the VCH and the system from which you are connecting to the VCH, or between the vSphere Integrated Containers appliance and the ESXi host on which it is running.

Solutions

Ensure that the system time is synchronized between VCHs and systems that connect to them, and between the appliance and the underlying host.

VCH Certificate Errors

1. Go to the VCH Admin portal for the VCH at https://vch_address:2378 and check the System Time under **VCH Info**.
2. If the system time of the VCH is wrong, run **vic-machine debug** to enable SSH access to the VCH.
   
   For information about enabling SSH on a VCH, see **Authorize SSH Access to the VCH Endpoint VM**.
3. Connect to the VCH endpoint VM by using SSH.
4. Use the `date --set` Linux command to set the system clock to the correct date and time.

The two most common date formats are the following:

- **Unix Time Stamp**: `date --set='@1480969133'`
- **YYYYMMDD HH:MM format**: `date --set="20161205 14:31"`

To prevent this issue recurring on VCHs that you deploy in the future, verify that the host time is correct on the ESXi host on which you deploy VCHs. For information about verifying time synchronization on ESXi hosts, see VMware KB 1003736.

**Platform Services Controller Token Errors**

Configure the vSphere Integrated Containers appliance to use Network Time Protocol (NTP) synchronization. For information about configuring NTP by using the vSphere Client, see VMware KB 1014038.

Alternatively, configure NTP directly in the appliance VM.

1. Use SSH to connect to the vSphere Integrated Containers appliance as root user.

   ```bash
 ssh root@vic_appliance_address
   ```

2. Enable NTP in the appliance.

   ```bash
timedatectl set-ntp true
   ```

3. (Optional) Open `/etc/systemd/timesyncd.conf` in a text editor, uncomment the `NTP` line, and add an NTP server address.

   ```bash
 [Time]
 NTP=ntp_server_address
   ```
Some Users Cannot Access vSphere Integrated Containers Services

Attempts to connect to the Web-based services of the vSphere Integrated Containers appliance fail for certain users but not for others. The appliance and its services are running correctly.

Problem

The appliance and its services are running correctly. Some users can access the appliance welcome page, file server, and vSphere Integrated Containers Management Portal without problems, but for other users the connections fail.

Cause

Some users are attempting to access the appliance welcome page, file server, and vSphere Integrated Containers Management Portal from client systems that have IP addresses in the range 172.17.0.0-172.22.0.0/16. vSphere Integrated Containers appliance use the 172.17.0.0-172.22.0.0/16 networks internally. The routing table in the appliance contains routes for these subnets, which causes issues if users attempt to access vSphere Integrated Containers services from an address for which the appliance has a directly connected route. Attempts to connect to the appliance from client systems with IP addresses in the range 172.17.0.0-172.22.0.0/16 fail because the appliance routes return traffic to itself instead of to the client system.

Solution

Access the appliance welcome page, file server, and vSphere Integrated Containers Management Portal from client systems with IP addresses that are not in the 172.17.0.0-172.22.0.0/16 subnets.

For information about how to modify the network range, see VMware KB 56445.
Default Volume Store Error

When you create or run a container, the Docker operation fails with an error about a missing volume store.

Problem

Running the container fails with error:

```
docker: Error response from daemon: No volume store named (default) exists.
```

Cause

By default, vic-machine create does not create a volume store when the vSphere administrator deploys a VCH. To run containers from images that use volumes, the vSphere administrator must specify a volume store named default when they deploy the VCH.

Solution

Deploy a VCH by using the `vic-machine create --volume-store default` option to create a VCH with a volume store named `default`. See Specify Volume Stores.

Use `docker volume inspect` to get information about the volume.
Deleting or Inspecting a VCH Fails with a Not a VCH or Resource Pool Not Found Error

When you use `vic-machine delete` or `vic-machine inspect` to delete or inspect a virtual container host (VCH) and you specify the address of an ESXi host in the `target` option, the operation fails with "an error stating that the target is not a VCH or that the resource pool cannot be found".

Problem

Deleting or inspecting a VCH fails with one of the following error messages:

```plaintext
Inspecting VCH
Not a VCH
Failed to get Virtual Container Host vch_name
Not a VCH

vic-machine-os failed: inspect failed

Removing VCH
Not a VCH
Failed to get Virtual Container Host vch_name
Not a VCH

vic-machine-os failed: delete failed
```
vic-machine-os failed: delete failed

**Cause**

You set the `target` option to the address of an ESXi host that is managed by a vCenter Server instance. If there are multiple ESXi hosts in a cluster, the error that you see depends on the host that you specify in the `target` option.

- If you set the `target` option to the ESXi host on which the VCH is running, you see the error `Not a VCH, Failed to get Virtual Container Host`.
- If you set the `target` option to an ESXi host in the cluster that is not the one on which the VCH is running, you see the error `Not a VCH, Failed to get VCH resource pool`.

**Solution**

1. Run `vic-machine ls` with the `target` option set to the same ESXi host.

   The `vic-machine ls` operation fails but informs you of the address of the vCenter Server instance that manages the ESXi host.

2. Run `vic-machine delete` or `vic-machine inspect` again, setting the `target` option to the address of the vCenter Server instance that was returned by `vic-machine ls`.

333
Logging in to vSphere Integrated Containers Registry from Docker Fails

When you run `docker login vic_registry_address` to log in to vSphere Integrated Containers Registry from the Docker client, you see a 401 Unauthorized error.

**Problem**

This error occurs even though you have correctly configured the Docker client with the registry certificate and you have successfully logged in to this registry instance before.

**Cause**

This issue can occur if the vSphere Integrated Containers appliance has experienced a hard reboot rather than a soft reboot of the guest OS.

**Solution**

In the vSphere Client, restart the vSphere Integrated Containers appliance by selecting **Power > Restart Guest OS**.
Pulling Images into VCHs Fails with Image Store Error

When you attempt to pull certain container images from a registry into a vSphere Integrated Containers virtual container host (VCH), the pulls fail with an error. Pulls of other container images do not fail.

Problem

When you attempt to pull an image, you see the following error:

```
Failed to write to image store: [POST /storage/{image_store_name}] [5000] WriteImage
default &{Code: 500 Message:Failed to add disk 'scsi0:0'.}
```

Cause

When you use a standard Docker Engine, an image can have a maximum of 120 layers. When you use a vSphere Integrated Containers Engine virtual container host (VCH), an image can have a maximum of 90 layers. The image that you are pulling exceeds the limit of 90 layers.

Solution

Reduce the number of layers in the image to less than 90.
Deployment of Container that supports DHCP Network Fails

When you deploy a container by specifying the DHCP network in the Docker run command, deployment fails and the command times out with an error.

Problem

If you use a network container that supports DHCP and the Docker run command to deploy the container, the command times out with the following error:

```
docker: Error response from daemon: Server error from portlayer: unable to wait for process launch status
```

Cause

The `--dns` option is not specified in the docker run command.

Solution

Specify the `--dns` option in the Docker run command for the container to get an IP address from DHCP server. For more information, see Supported Docker Commands.
Install Packages in the Virtual Container Host Endpoint VM

In certain circumstances, you might need to install a capability in the virtual container host (VCH) endpoint VM that does not exist by default. For example, you might want to install an NFS client in the endpoint VM, to test or debug connections from the VCH to an NFS server.

The VCH endpoint VM runs Photon OS 2.0. Photon OS provides a package manager named Tiny DNF, or `tdnf`, that is the default means of installing packages. For information about Tiny DNF, see Tiny DNF for Package Management in the Photon OS Administration Guide.

**IMPORTANT:**

Any installations and configurations that you perform by using Tiny DNF in the endpoint VM do not persist if you reboot the endpoint VM.

What to Do Next

For an example of how to install a package in the VCH endpoint VM, see Mount an NFS Share Point in the VCH Endpoint VM.
Mount an NFS Share Point in the VCH Endpoint VM

When creating an NFS client mount, the combination of permissions and settings on the server side and the number of possible combinations of options on the client side can make it very difficult to test. In addition, the question of which ports to open on firewalls can also cause connection problems.

If you deploy VCHs that use NFS share points as volume stores, you can test the connections to these share points by mounting the NFS server from within the VCH endpoint VM. Confirming that you can mount the NFS share point from within the endpoint VM confirms that the NFS volume store configuration will also work. However, the mount.nfs package is not included in the VCH endpoint VM by default. You must use the Photon OS package manager, Tiny DNF, to add it manually. VCHs run Photon OS 2.0.

Prerequisites

- Run the vic-machine debug command with the --enable-ssh and --rootpw options to enable SSH access to the VCH endpoint VM and to set the root password. For information about vic-machine debug, see Debug Running Virtual Container Hosts.
- Follow the instructions in Install Packages in the Virtual Container Host Endpoint VM to configure the VCH endpoint VM so that it can run Tiny DNF commands.
- You have an NFS share point that is configured for anonymous mounting.
- Use SSH to connect to the VCH endpoint VM as root user.

Procedure

1. Install the nfs-utils package.

   tdnf install nfs-utils

2. Install the iana-etc package.

   This package adds the /etc/services file, which is not present by default.

   tdnf install iana-etc

3. Start the rpcbind service.

   systemctl start rpcbind

4. Check the status of the rpcbind service.

   systemctl status rpcbind

   If rpcbind is running correctly, you should see the message:
5. Mount the NFS share point in the VCH endpoint VM.

```bash
mount.nfs nfs_sharepoint_url -o vers=3
```

For information about how to specify the NFS sharepoint URL, see the description of the `--volume-store` option in `Specify Volume Datastores`.

**Result**

If the mount operation was successful, the NFS share point is correctly configured for use as a volume store by this VCH.
Troubleshoot Upgrade Operation

This section provides solutions for common problems that you might encounter when using vSphere Integrated Containers Management Portal or virtual container hosts (VCHs) after upgrade.

- Custom Certificates are Not Copied During Upgrade
- Container VMs Orphaned After Upgrade
Custom Certificates are Not Copied During Upgrade

After upgrading the vSphere Integrated Containers appliance, the new version of the appliance does not use custom certificates that you used with the previous version.

Problem

If you deployed a previous version of the vSphere Integrated Containers appliance with custom certificates, these certificates are not automatically copied to the new version of the appliance.

Cause

Previously, the documentation stated erroneously that the certificates are copied from the old appliance to the new. In fact, you must provide the same certificates when you deploy the new version of the appliance, otherwise self-signed certificates are generated.

Solution

Provide the custom certificate information in the OVA deployment wizard when you deploy the new version of the appliance. Use the same certificates as you used with the older version.

If you have already upgraded the appliance and you did not provide the custom certificate during deployment of the new version, you can reconfigure the new version of the appliance after deployment. For information about how to reconfigure the appliance, see Reconfigure the vSphere Integrated Containers Appliance.
Container VMs Orphaned After Upgrade

After you upgrade vSphere Integrated Containers from version 1.2.x or 1.3.x to 1.4.0 or later, associations between container VMs and virtual container hosts (VCH) are broken and the container VMs appear as orphaned in the vSphere Client. When you try to manage the container VMs through the Docker client, the container VMs are not listed.

Problem

After an upgrade, when you run `docker container ls` on the Docker client, the container VMs might not be listed.

Cause

This error can occur in one of the following situations:

- The container VMs that are not listed were missing before the upgrade.
- The container VMs are not in the VM folder that is created in the image store during the upgrade procedure.
- The container VMs and the VCH Endpoint VM are already moved to the container VM folder before the upgrade.

Solution

If the container VMs that are not listed on the Docker client are present in the vSphere client, verify if they are in the VM folder in the image store after the upgrade. If they are not present, then manually move the container VMs into that folder.
vSphere Integrated Containers Security Reference

The Security Reference provides information to allow you to secure your vSphere Integrated Containers implementation.

Service Accounts, Privileges, and User Authentication

vSphere Integrated Containers does not create service accounts and does not assign any vSphere privileges. The vSphere Integrated Containers appliance uses vCenter Single Sign-On user accounts to manage user authentication. You can optionally create example Single Sign-On user accounts for vSphere Integrated Containers Management Portal when you deploy the appliance. For information about the example user accounts, see User Authentication and Deploy the vSphere Integrated Containers Appliance.

Appliance Authentication with vSphere

The appliance uses a single TLS certificate for all of the services that run in the appliance.

For information about how vSphere Integrated Containers uses certificates, see the vSphere Integrated Containers Appliance Certificate Requirements.

VCH Authentication with vSphere

Using vic-machine to deploy and manage virtual container hosts (VCHs) requires a user account with vSphere administrator privileges. The vic-machine create --ops-user and --ops-password options allow a VCH to operate with less-privileged credentials than those that are required to deploy a new VCH. For information about the --ops-user option and the permissions that it requires, see Create the Operations User Account.

When deploying VCHs, you must provide the certificate thumbprint of the vCenter Server or ESXi host on which you are deploying the VCH. For information about how to obtain and verify vSphere certificate thumbprints, see Obtain vSphere Certificate Thumbprints. Be aware that it is possible to use the --force option to run vic-machine commands that bypass vSphere certificate verification. For information about the --force option, see --force in the topic on running vic-machine commands.

Docker Client and Management Portal Authentication with VCHs

VCHs authenticate Docker API clients and vSphere Integrated Containers Management Portal by using client certificates. For information about VCHs and client authentication, see the Virtual Container Host Certificate Requirements. Be aware that it is possible to use the --no-tlsverify and --no-tls options to deploy VCHs that do not authenticate client connections. For information about the --no-tlsverify and --no-tls options, see Disable Certificate Authentication.

Network Security
All connections to vSphere Integrated Containers Management Portal and Registry are encrypted and secured by HTTPS.

VMware highly recommends using a secure network for the VCH management network. For more information about connections to VCHs in general and the management network in particular, see Virtual Container Host Networks and Configure the Management Network.

**External Interfaces, Ports, and Services**

The following ports must be open on the vSphere Integrated Containers appliance, VCH endpoint VMs, and container VMs:

**ESXi Hosts**

ESXi hosts must have the following firewall configuration for VCH deployment:

- Allow outbound TCP traffic to port 2377 on the endpoint VM, for use by the interactive container shell.
- Allow inbound HTTPS/TCP traffic on port 443, for uploading to and downloading from datastores.

For information about how to open ports on ESXi hosts, see Open the Required Ports on ESXi Hosts.

**vSphere Integrated Containers Appliance**

The vSphere Integrated Containers appliance makes the core vSphere Integrated Containers services available.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>Connections to vSphere Integrated Containers Registry from vSphere Integrated Containers Management Portal, VCHs, and Docker clients</td>
</tr>
<tr>
<td>4443</td>
<td>HTTPS</td>
<td>Connections to the Docker Content Trust service for vSphere Integrated Containers Registry</td>
</tr>
<tr>
<td>8282</td>
<td>HTTPS</td>
<td>Connections to vSphere Integrated Containers Management Portal UI and API</td>
</tr>
<tr>
<td>8443</td>
<td>HTTPS</td>
<td>Connections to the <code>vic-machine-server</code> service, that powers the Create Virtual Container Host wizard in the HTML5 vSphere Client plug-in</td>
</tr>
<tr>
<td>9443</td>
<td>HTTPS</td>
<td>Connections to the appliance initialization and appliance welcome page, vSphere Integrated Containers Engine download, and vSphere Client plug-in installer</td>
</tr>
</tbody>
</table>

**VCH Endpoint VM**

The different network interfaces on a VCH expose different services on different ports. For an overview of the different network interfaces on a VCH, see Virtual Container Host Networks.

**Public Network**

Container developers can forward any VCH port that is not used elsewhere to a container VM. For more information about the VCH public network, see Configure the Public Network.
**Bridge Network**

For information about the VCH bridge network, see [Configure Bridge Networks](#).

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>TCP</td>
<td>Connections from the VCH to DNS servers for container name resolution</td>
</tr>
</tbody>
</table>

**Client Network**

For information about the VCH client network, see [Configure the Client Network](#).

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>SSH</td>
<td>Connections to the VCH when using <code>vic-machine debug --enable-ssh</code> or <code>vic-machine create/configure --debug 3</code>.</td>
</tr>
<tr>
<td>2375</td>
<td>HTTP</td>
<td>Insecure port for Docker API access if VCH is deployed with <code>--no-tls</code></td>
</tr>
<tr>
<td>2376</td>
<td>HTTPS</td>
<td>Secure port for Docker API access if VCH is not deployed with <code>--no-tls</code></td>
</tr>
<tr>
<td>2378</td>
<td>HTTPS</td>
<td>Connections to the VCH Administration Portal server</td>
</tr>
<tr>
<td>6060</td>
<td>HTTPS</td>
<td>Exposes <code>pprof</code> debug data about the VCH if the VCH is running with <code>vic-machine create --debug</code> or <code>vic-machine configure --debug</code> enabled</td>
</tr>
</tbody>
</table>

For information about VCH TLS options, see [Virtual Container Host Security](#). For information about how debugging VCHs affects VCH behavior, see [Debug](#) in the topic on configuring general VCH settings and [Debug Running Virtual Container Hosts](#).

**Management Network**

For information about the VCH management network, see [Configure the Management Network](#).

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>Outgoing connections from the VCH to vCenter Server and ESXi hosts</td>
</tr>
<tr>
<td>2377</td>
<td>HTTPS</td>
<td>Incoming connections from container VMs to the VCH</td>
</tr>
</tbody>
</table>

**Container VMs**

If container developers do not explicitly expose ports, container VMs do not expose any ports if they are not running in debug mode.

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6060</td>
<td>HTTPS</td>
<td>Exposes <code>pprof</code> debug data about a container VM when a VCH is running with <code>vic-machine create --debug</code> enabled</td>
</tr>
</tbody>
</table>

**Security Updates and Patches**
Download a new version of vSphere Integrated Containers and upgrade your existing appliances, the vSphere Client plug-in, and your VCHs. For information about installing security patches, see Upgrading vSphere Integrated Containers.

Security Related Log Messages

Security-related information for vSphere Integrated Containers Engine appears in `docker-personality.log` and `vicadmin.log`, that you can access from the VCH Admin portal for a VCH. For information about accessing VCH logs, see Access Virtual Container Host Log Bundles.

There are no specific security-related logs for the vSphere Integrated Containers appliance. To access logs for the appliance, see Access vSphere Integrated Containers Appliance Logs.

Sensitive Data

The VMX file of the VCH endpoint VM stores vSphere Integrated Containers Engine configuration information, which allows most of the configuration to be read-only by the guest. The container VMs might hold sensitive application data, such as environment variables for processes, command arguments, and so on.

vSphere Integrated Containers Management Portal securely stores the credentials for access to VCHs, Docker hosts, and registries. Any private elements of those credentials, such as passwords or private keys, are kept encrypted in the vSphere Integrated Containers Management Portal data store.
vic-machine Options Reference

This topic includes lists of all of the options of the different vic-machine commands, with links to the sections of the documentation that describe them.

vic-machine create Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--affinity-vm-group</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--appliance-iso</td>
<td>Virtual Container Host Boot Options</td>
</tr>
<tr>
<td>--asymmetric-routes</td>
<td>Configure the Management Network</td>
</tr>
<tr>
<td>--base-image-size</td>
<td>Specify the Image Datastore</td>
</tr>
<tr>
<td>--bootstrap-iso</td>
<td>Virtual Container Host Boot Options</td>
</tr>
<tr>
<td>--bridge-network</td>
<td>Configure Bridge Networks</td>
</tr>
<tr>
<td>--bridge-network-range</td>
<td>Configure Bridge Networks</td>
</tr>
<tr>
<td>--bridge-network-width</td>
<td>Configure Bridge Networks</td>
</tr>
<tr>
<td>--certificate-key-size</td>
<td>Virtual Container Host Certificate Options</td>
</tr>
<tr>
<td>--client-network</td>
<td>Configure the Client Network</td>
</tr>
<tr>
<td>--client-network-gateway</td>
<td>Configure the Client Network</td>
</tr>
<tr>
<td>--client-network-ip</td>
<td>Configure the Client Network</td>
</tr>
<tr>
<td>--compute-resource</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--container-name-convention</td>
<td>General Virtual Container Host Settings</td>
</tr>
<tr>
<td>--container-network</td>
<td>Configure Container Networks</td>
</tr>
<tr>
<td>--container-network-dns</td>
<td>Configure Container Networks</td>
</tr>
<tr>
<td>--container-network-firewall</td>
<td>Configure Container Networks</td>
</tr>
<tr>
<td>--container-network-gateway</td>
<td>Configure Container Networks</td>
</tr>
<tr>
<td>--container-network-ip-range</td>
<td>Configure Container Networks</td>
</tr>
<tr>
<td>--containers</td>
<td>General Virtual Container Host Settings</td>
</tr>
<tr>
<td>--cpu</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--cpu-reservation</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--cpu-shares</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--debug</td>
<td>General Virtual Container Host Settings</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>--dns-server</td>
<td>Configure the Public Network</td>
</tr>
<tr>
<td>--endpoint-cpu</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--endpoint-memory</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--force</td>
<td>Basic <em>vic-machine create</em> Options</td>
</tr>
<tr>
<td>--image-store</td>
<td>Specify the Image Datastore</td>
</tr>
<tr>
<td>--insecure-registry</td>
<td>Configure Registry Access</td>
</tr>
<tr>
<td>--http-proxy</td>
<td>Configure VCHs to Use Proxy Servers</td>
</tr>
<tr>
<td>--https-proxy</td>
<td>Configure VCHs to Use Proxy Servers</td>
</tr>
<tr>
<td>--management-network</td>
<td>Configure the Management Network</td>
</tr>
<tr>
<td>--management-network-gateway</td>
<td>Configure the Management Network</td>
</tr>
<tr>
<td>--management-network-ip</td>
<td>Configure the Management Network</td>
</tr>
<tr>
<td>--memory</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--memory-reservation</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--memory-shares</td>
<td>Virtual Container Host Compute Capacity</td>
</tr>
<tr>
<td>--name</td>
<td>General Virtual Container Host Settings</td>
</tr>
<tr>
<td>--no-proxy</td>
<td>Configure VCHs to Use Proxy Servers</td>
</tr>
<tr>
<td>--no-tls</td>
<td>Disable Client Verification</td>
</tr>
<tr>
<td>--no-tlsverify</td>
<td>Disable Client Verification</td>
</tr>
<tr>
<td>--ops-grant-perms</td>
<td>Configure the Operations User</td>
</tr>
<tr>
<td>--ops-password</td>
<td>Configure the Operations User</td>
</tr>
<tr>
<td>--ops-user</td>
<td>Configure the Operations User</td>
</tr>
<tr>
<td>--organization</td>
<td>Virtual Container Host Certificate Options</td>
</tr>
<tr>
<td>--password</td>
<td>Basic <em>vic-machine create</em> Options</td>
</tr>
<tr>
<td>--public-network</td>
<td>Configure the Public Network</td>
</tr>
<tr>
<td>--public-network-gateway</td>
<td>Configure the Public Network</td>
</tr>
<tr>
<td>--public-network-ip</td>
<td>Configure the Public Network</td>
</tr>
<tr>
<td>--registry-ca</td>
<td>Configure Registry Access</td>
</tr>
<tr>
<td>--storage-quota</td>
<td>Specify the Image Datastore</td>
</tr>
<tr>
<td>--syslog-address</td>
<td>General Virtual Container Host Settings</td>
</tr>
<tr>
<td>--target</td>
<td>Basic <em>vic-machine create</em> Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Basic <em>vic-machine create</em> Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Basic <em>vic-machine create</em> Options</td>
</tr>
</tbody>
</table>
Virtual Container Host Certificate Options

- `--tls-ca`
- `--tls-cert-path`
- `--tls-cname`
- `--tls-server-cert`
- `--tls-server-key`

Basic `vic-machine create` Options

- `--user`

Specify Volume Datastores

- `--volume-store`

Configure Registry Access

- `--whitelist-registry`

Basic `vic-machine configure` Options

- `--affinity-vm-group`
- `--compute-resource`
- `--container-network`
- `--container-network-dns`
- `--container-network-firewall`
- `--container-network-gateway`
- `--container-network-ip-range`
- `--containers`
- `--cpu`
- `--cpu-reservation`
- `--cpu-shares`
- `--debug`
- `--dns-server`
- `--force`
- `--http-proxy`
- `--https-proxy`
- `--id`
- `--memory`
- `--memory-reservation`
- `--memory-shares`

Configure Registry Datastores

- `--volume-store`

Configure CPU and Memory Allocations

- `--memory`
- `--memory-reservation`
- `--memory-shares`

Configure Debug Mode

- `--debug`

Add and Reset DNS Servers

- `--dns-server`

Add, Configure, or Remove Proxy Servers

- `--http-proxy`
- `--https-proxy`

Set or Update Container VM Limit

- `--containers`

Using `vic-machine configure`

- `--force`

Common `vic-machine` Options

- `--compute-resource`
- `--cpu`
- `--memory`

Configure Container Network Settings

- `--container-network`
- `--container-network-dns`
- `--container-network-firewall`
- `--container-network-gateway`
- `--container-network-ip-range`
<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--name</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--no-tlsverify</code></td>
<td>Update Security Configuration</td>
</tr>
<tr>
<td><code>--ops-grant-perms</code></td>
<td>Update vCenter Server Credentials</td>
</tr>
<tr>
<td><code>--ops-password</code></td>
<td>Update vCenter Server Credentials</td>
</tr>
<tr>
<td><code>--ops-user</code></td>
<td>Update vCenter Server Credentials</td>
</tr>
<tr>
<td><code>--password</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--registry-ca value</code></td>
<td>Add or Update Registry Server Certificates</td>
</tr>
<tr>
<td><code>--reset-progress</code></td>
<td>Reset Upgrade or Configuration Progress</td>
</tr>
<tr>
<td><code>--storage-quota</code></td>
<td>Set or Update Storage Quotas</td>
</tr>
<tr>
<td><code>--target</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--thumbprint</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--timeout</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--tls-cert-path</code></td>
<td>Update Security Configuration</td>
</tr>
<tr>
<td><code>--tls-cname</code></td>
<td>Update Security Configuration</td>
</tr>
<tr>
<td><code>--tls-server-cert</code></td>
<td>Update Security Configuration</td>
</tr>
<tr>
<td><code>--tls-server-key</code></td>
<td>Update Security Configuration</td>
</tr>
<tr>
<td><code>--user</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--volume-store</code></td>
<td>Add Volume Stores</td>
</tr>
</tbody>
</table>

**vic-machine debug Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--authorized-key</code></td>
<td>Authorize SSH Access to the VCH Endpoint VM</td>
</tr>
<tr>
<td><code>--compute-resource</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--enable-ssh</code></td>
<td>Authorize SSH Access to the VCH Endpoint VM</td>
</tr>
<tr>
<td><code>--id</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--name</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--password</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--rootpw</code></td>
<td>Enable shell access to the VCH Endpoint VM</td>
</tr>
<tr>
<td><code>--target</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--thumbprint</code></td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td><code>--timeout</code></td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>
### Vic-machine Delete Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--compute-resource</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--force</td>
<td>Delete Virtual Container Hosts</td>
</tr>
<tr>
<td>--id</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--name</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--password</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--target</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--user</td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>

### Vic-machine Inspect Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--compute-resource</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--id</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--name</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--password</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--target</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--tls-cert-path</td>
<td>Obtain General Virtual Container Host Information and Connection Details</td>
</tr>
<tr>
<td>--user</td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>

### Vic-machine Inspect Config Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--compute-resource</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--id</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>Option</td>
<td>Documentation</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------------</td>
</tr>
<tr>
<td>--format</td>
<td>Obtain Virtual Container Host Configuration Information</td>
</tr>
<tr>
<td>--name</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--password</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--target</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--tls-cert-path</td>
<td>Obtain General Virtual Container Host Information and Connection Details</td>
</tr>
<tr>
<td>--user</td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>

**vic-machine ls Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--password</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--target</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--user</td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>

**vic-machine update firewall Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>--allow</td>
<td>Open the Required Ports on ESXi Hosts</td>
</tr>
<tr>
<td>--compute-resource</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--deny</td>
<td>Open the Required Ports on ESXi Hosts</td>
</tr>
<tr>
<td>--password</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--target</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--thumbprint</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--timeout</td>
<td>Common vic-machine Options</td>
</tr>
<tr>
<td>--user</td>
<td>Common vic-machine Options</td>
</tr>
</tbody>
</table>

**vic-machine upgrade Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Documentation</th>
</tr>
</thead>
</table>
--appliance-iso VCH Upgrade Options
--bootstrap-iso VCH Upgrade Options
--compute-resource Common vic-machine Options
--debug VCH Upgrade Options
--force VCH Upgrade Options
--id Common vic-machine Options
--name Common vic-machine Options
--password Common vic-machine Options
--reset-progress VCH Upgrade Options
--rollback VCH Upgrade Options
--target Common vic-machine Options
--thumbprint Common vic-machine Options
--timeout Common vic-machine Options
--user Common vic-machine Options

**vic-machine version** Options

The **vic-machine version** command has no options.