

1.1

1.1.1

1.1.1.1

1.1.1.2

1.1.2

1.1.3

1.1.4

1.1.5

1.1.5.1

1.1.5.1.1

1.1.5.1.2

1.1.5.1.3

1.1.5.2

1.1.5.2.1

1.1.5.2.2

1.1.5.2.3

1.1.5.2.4

1.1.6

1.1.7

1.1.8

1.1.8.1

1.1.8.2

1.1.8.3

Table of Contents
Application Development

Supported Docker Commands

Supported Docker Compose File Options

Supported Dockerfile Instructions

Obtain a VCH

Configure the Docker Client

Use and Limitations

Building and Pushing Images

Deploy a Test dch-photon

Add Certificate to Custom Image

Manually Add Certificate

Build, Push, and Pull and Image

Advanced Use of dch-photon

Advanced Options

Expand the Root Disk

Use Proxy Servers

Add a Custom Registry CA

Using Volumes

Container Networking

Creating a Containerized App

Putting Apps into Production

Deploy a Single Container VM

Deploy Container VMs with Compose

2

Developing Applications with vSphere Integrated
Containers
Developing Container Applications with vSphere Integrated Containers provides information about how to use
VMware vSphere® Integrated Containers™ virtual container hosts (VCHs) as the endpoints for Docker container
application development.

Product version: 1.4

This documentation applies to all 1.4.x releases.

Intended Audience
This information is intended for container application developers whose development environment uses vSphere
Integrated Containers. Knowledge of container technology and Docker is assumed.

In particular, these topics explain how developing with vSphere Integrated Containers differs from development in a
regular Docker environment, and often enhances it.

Copyright © 2016-2018 VMware, Inc. All rights reserved. Copyright and trademark information. Any feedback you
provide to VMware is subject to the terms at www.vmware.com/community_terms.html.

VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304

www.vmware.com

3

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://docs.docker.com/
http://pubs.vmware.com/copyright-trademark.html
http://www.vmware.com/community_terms.html
http://www.vmware.com

Supported Docker Commands
vSphere Integrated Containers Engine 1.4 supports Docker client 1.13.0. The supported version of the Docker API is
1.25.

Docker Management Commands
Image Commands
Container Commands
Hub and Registry Commands
Network and Connectivity Commands
Shared Data Volume Commands
Docker Compose Commands
Swarm Commands

Docker Management Commands

Command Docker
Reference Supported

 dockerd
Launch the
Docker
daemon

Not applicable. This construct does not exist in vSphere Integrated Containers

 info
Docker
system
information

Yes, since 1.0. Provides Docker-specific data, basic capacity information, lists
configured volume stores, and virtual container host information. Does not
reveal vSphere datastore paths that might contain sensitive vSphere
information.

 inspect
Inspect a
container
or image

Yes, since 1.0. Includes information about the container network.

 version
Docker
version
information

Yes, since 1.0

Image Commands

Command Docker Reference Supported

 build Build an image from a Dockerfile No

 commit Create a new image from a container’s
changes

Yes, since 1.2. You can only run docker commit
on stopped containers.

 history Show the history of an image No

 images Images Yes, since 1.0. Supports --filter , --no-trunc ,
and --quiet

4

https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/info/
https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/version/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/history/
https://docs.docker.com/engine/reference/commandline/images/

 import Import the contents from a tarball to
create a filesystem image No

 load Load an image from a tar archive or
STDIN No

 rmi Remove a Docker image Yes, since 1.0

 save Save images No

 tag Tag an image into a repository Yes, since 1.0

Container Commands

Command Docker
Reference Supported

 attach Attach to a
container Yes, since 1.0

 container
list

List
Containers Yes, since 1.0

 container
resize

Resize a
container Yes, since 1.0

 cp

Copy files
or folders
between a
container
and the
local
filesystem

Yes, since 1.2. You cannot copy to an NFS volume that is not in use by a
running container. You cannot copy from an unstarted container that uses NFS
volumes.

 create Create a
container

Yes, since 1.0.
 --cpuset-cpus in Docker specifies CPUs the container is allowed to use during
execution (0-3, 0,1). In vSphere Integrated Containers Engine, this parameter
specifies the number of virtual CPUs to allocate to the container VM. Minimum
CPU count is 1, maximum is unlimited. Default is 2.
 --ip allows you to set a static IP on the container. By default, the virtual
container host manages the container IP.
Minimum value for --memory is 512MB, maximum unlimited. If unspecified, the
default is 2GB. Supports the --attach , --cidfile , --cpuset-cpus , --entrypoint ,
 --env , --env-file , --help , --interactive , --ip , --link , --memory , --name ,
 --net , --net-alias , --publish , --rm , --stop-signal , --stop-timeout , --tty ,
 --user , --volume , and --workdir options.

 diff

Inspect
changes
on a
container's
filesystem

Yes, since 1.2

 events

Get real
time
events
from the
server

Yes, since 1.0. Supports passive Docker events for containers and images.
Does not yet support events for volumes or networks.

5

https://docs.docker.com/engine/reference/commandline/import/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/attach/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.22/#list-containers
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.23/#resize-a-container-tty
https://docs.docker.com/engine/reference/commandline/cp/
https://docs.docker.com/engine/reference/commandline/create/
https://docs.docker.com/engine/reference/commandline/diff/
https://docs.docker.com/engine/reference/commandline/events/

 exec

Run a
command
in a
running
container

Yes, since 1.2

 export Export a
container No

 kill
Kill a
running
container

Yes, since 1.0. Docker must wait for the container to shut down.

 logs
Get
container
logs

Yes, since 1.0. Supports --since and --timestamps since 1.2.

 pause

Pause
processes
in a
container

No

 port Obtain
port data

Yes, since 1.0. Displays port mapping data.
Supports mapping a random host port to the container when the host port is not
specified.

 ps
Show
running
containers

Yes, since 1.0. Supports the -a/--all , -f/--filter , --no-trunc , and -q/--
quiet options. Filtering by network name is supported, but filtering by network
ID is not supported.

 rename Rename a
container

Yes, since 1.1. Name resolution for renamed running containers is not
supported, but if you restart the container the new name is resolved.

 restart Restart a
container Yes, since 1.0

 rm Remove a
container

Yes, since 1.0. Supports the --force option and the name parameter. To view
volumes attached to a container that is removed, use docker volume ls and
 docker volume inspect <id> . If you continually invoke docker create to make
more anonymous volumes, those volumes are left behind after each
subsequent removal of that container.
Supports docker rm -v since 1.3. Running the command removes the container
and any anonymous volumes joined to that container. If an anonymous volume
is in use by another container, it is not removed. Named volumes that you
specify by name in the create/run command are not deleted.

 run

Run a
command
in a new
container

Yes, since 1.0. Supports mapping a random host port to the container when the
host port is not specified.
Supports running images from private and custom registries.
 docker run -h is supported since 1.3.0. You can specify a container network by
using the --container-network option when you deploy a virtual container host.
Supports the --attach , --cidfile , --cpuset-cpus , --detach , --detach-keys , --
entrypoint , --env , --env-file , --help , --interactive , --ip , --link , --
memory , --name , --net , --net-alias , --publish , --rm , --stop-signal , --stop-
timeout , --tty , --user , --volume , and --workdir options.

 start Start a
container Yes, since 1.0. Supports the --attach and --interactive options.

Get
container
stats Yes. Provides statistics about CPU and memory usage since 1.1. Provides

6

https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/export/
https://docs.docker.com/engine/reference/commandline/kill/
https://docs.docker.com/engine/reference/commandline/logs/
https://docs.docker.com/engine/reference/commandline/pause/
https://docs.docker.com/engine/reference/commandline/port/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/rename/
https://docs.docker.com/engine/reference/commandline/restart/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/start/
https://docs.docker.com/engine/reference/commandline/stats/

based on
resource
usage

statistics about network or disk usage since 1.2.

 stop Stop a
container

Yes, since 1.0. Attempts to politely stop the container. If that fails, powers down
the VM.

 top

Display
the
running
processes
of a
container

No

 unpause

Unpause
processes
within a
container

No

 update Update a
container No

 wait Wait for a
container Yes, since 1.0

Hub and Registry Commands

Command Docker Reference Supported

 login Log into a registry Yes, since 1.0

 logout Log out from a registry Yes, since 1.0

 pull Pull an image or repository
from a registry

Yes, since 1.0. Supports pulling from secure or insecure
public and private registries.

 push Push an image or a
repository to a registry No

 search Search the Docker hub for
images No

Network and Connectivity Commands
For more information about network operations with vSphere Integrated Containers Engine, see Container
Networking with vSphere Integrated Containers Engine.

Command Docker
Reference Supported

 network
connect

Connect to
a network

Yes, since 1.0. Not supported for running containers.

You can specify the --ip option to assign a static IP address to a container. If
you do not specify --ip , the VCH assigns an IP address from the provided
range of addresses for the container network. Using the --ip option on
container networks with DHCP enabled is not supported.

7

https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/top/
https://docs.docker.com/engine/reference/commandline/unpause/
https://docs.docker.com/engine/reference/commandline/update/
https://docs.docker.com/engine/reference/commandline/wait/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/search/
https://docs.docker.com/engine/reference/commandline/network_connect/

container networks with DHCP enabled is not supported.

 network
create

Create a
network

Yes, since 1.1. See the use case to connect a container to an external network
in Container Networking with vSphere Integrated Containers Engine. Bridge is
also supported.

 network
disconnect

Disconnect
a network No

 network
inspect

Inspect a
network Yes, since 1.0

 network ls List
networks/ Yes, since 1.0

 network rm Remove a
network Yes, since 1.0. Network name and network ID are supported.

Shared Data Volume Commands
For more information about volume operations with vSphere Integrated Containers Engine, see Using Volumes with
vSphere Integrated Containers Engine.

Command Docker
Reference Supported

 volume
create

Create a
volume

Yes, since 1.0. Supports the --opt Capacity and --opt VolumeStore options, and
ignores any other options that you might specify. Currently only supports ext4
file systems for volume stores.

 volume
inspect

Information
about a
volume

Yes, since 1.0

 volume ls List
volumes Yes, since 1.0

 volume rm
Remove or
delete a
volume

Yes, since 1.0

Docker Compose Commands
vSphere Integrated Containers Engine 1.4 supports Docker Compose version 1.11.2.

For more information about using Docker Compose with vSphere Integrated Containers Engine, see Creating a
Containerized Application with vSphere Integrated Containers Engine.

For information about Docker Compose file support, see Supported Docker Compose File Options.

Command Docker Reference Supported

 build Build or rebuild service No. Depends on docker build .

Generate a Distributed

8

https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_disconnect/
https://docs.docker.com/engine/reference/commandline/network_inspect/
https://docs.docker.com/engine/reference/commandline/network_ls/
https://docs.docker.com/engine/reference/commandline/network_rm/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_rm/
https://docs.docker.com/compose/reference/build/
https://docs.docker.com/compose/reference/bundle/

the Compose file

 config Validate and view the compose
file Yes, since 1.0

 create Create services Yes, since 1.0

 down Stop and remove containers,
networks, images, and volumes Yes, since 1.0

 events Receive real time events from
containers

Yes, since 1.0. Supports passive Docker events for
containers and images. Does not yet support events for
volumes or networks.

 exec Run commands in services No. Depends on docker exec .

 help Get help on a command Yes, since 1.0

 kill Kill containers No, but docker kill works.

 logs View output from containers Yes, since 1.0

 pause Pause services No. Depends on docker pause .

 port Print the public port for a port
binding Yes, since 1.0

 ps List containers Yes, since 1.0

 pull Pulls service images Yes, since 1.0

 push Pushes images for service No. Depends on docker push

 restart Restart services Yes, since 1.0

 rm Remove stopped containers Yes, since 1.0

 run Run a one-off command Yes, since 1.0

 scale Set number of containers for a
service Yes, since 1.0

 start Start services Yes, since 1.0

 stop Stop services Yes, since 1.0

 unpause Unpause services No. Depends on docker unpause .

 up Create and start containers Yes, since 1.1

 version Show Docker Compose version
information Yes, since 1.0

Swarm Commands
This version of vSphere Integrated Containers Engine does not directly support Docker Swarm. However, you can
use the dch-photon Docker Engine to instantiate a Docker swarm for use with vSphere Integrated Containers.

NOTE: Using dch-photon to instantiate Docker swarm is not officially supported.

9

https://docs.docker.com/compose/reference/config/
https://docs.docker.com/compose/reference/create/
https://docs.docker.com/compose/reference/down/
https://docs.docker.com/compose/reference/events/
https://docs.docker.com/compose/reference/exec/
https://docs.docker.com/compose/reference/help/
https://docs.docker.com/compose/reference/kill/
https://docs.docker.com/compose/reference/logs/
https://docs.docker.com/compose/reference/pause/
https://docs.docker.com/compose/reference/port/
https://docs.docker.com/compose/reference/ps/
https://docs.docker.com/compose/reference/pull/
https://docs.docker.com/compose/reference/push/
https://docs.docker.com/compose/reference/restart/
https://docs.docker.com/compose/reference/rm/
https://docs.docker.com/compose/reference/run/
https://docs.docker.com/compose/reference/scale/
https://docs.docker.com/compose/reference/start/
https://docs.docker.com/compose/reference/stop/
https://docs.docker.com/compose/reference/unpause/

NOTE: Using dch-photon to instantiate Docker swarm is not officially supported.

10

Supported Docker Compose File Options
vSphere Integrated Containers Engine 1.4 supports Docker Compose file version 2, 2.1, and 2.2.

This topic provides information about the Docker Compose file options that vSphere Integrated Containers Engine 1.4
supports.

Service Configuration Options
Volume Configuration Options
Network Configuration Options

Service Configuration Options

Option Compose File Reference Supported

 build Options applied at build time No

 cap_add , cap_drop Add or drop container
capabilities

No. Depends on docker run --cap-add and
 docker run --cap-drop

 command Override the default command Yes

 cgroup_parent Specify an optional parent
 cgroup for the container. No; need docker run --cgrop_parent

 container_name Specify a custom container
name Yes

 devices List of device mappings No. Depends on docker create --device .

 depends_on Express dependency between
services Yes

 dns Custom DNS servers Yes

 dns_search Custom DNS search domains No. Depends on docker run --dns-search .

 tmpfs Mount a temporary file system
inside the container No. Depends on docker run --tmpfs .

 entrypoint Override the default entry point No. Depends on docker run --entrypoint .

 env_file
Add environment variables
from a file Yes

 environment Add environment variables Yes

 expose Expose ports without publishing
them to the host machine No. Depends on docker run --expose .

 extends Extend another service Yes

 external_links Link to containers started
outside this YML Yes

 extra_hosts Add hostname mappings No. Depends on docker run --add-host .
11

https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/#build
https://docs.docker.com/compose/compose-file/compose-file-v2/#capadd-capdrop
https://docs.docker.com/compose/compose-file/compose-file-v2/#command
https://docs.docker.com/compose/compose-file/compose-file-v2/#cgroupparent
https://docs.docker.com/compose/compose-file/compose-file-v2/#containername
https://docs.docker.com/compose/compose-file/compose-file-v2/#devices
https://docs.docker.com/compose/compose-file/compose-file-v2/#dependson
https://docs.docker.com/compose/compose-file/compose-file-v2/#dns
https://docs.docker.com/compose/compose-file/compose-file-v2/#dnssearch
https://docs.docker.com/compose/compose-file/compose-file-v2/#tmpfs
https://docs.docker.com/compose/compose-file/compose-file-v2/#entrypoint
https://docs.docker.com/compose/compose-file/compose-file-v2/#envfile
https://docs.docker.com/compose/compose-file/compose-file-v2/#environment
https://docs.docker.com/compose/compose-file/compose-file-v2/#expose
https://docs.docker.com/compose/compose-file/compose-file-v2/#extends
https://docs.docker.com/compose/compose-file/compose-file-v2/#externallinks

 extra_hosts Add hostname mappings No. Depends on docker run --add-host .

 group_add Specify additional groups for
the user inside the container Yes

 healthcheck Check container health No. Depends on docker run --health-cmd .

 image Specify container image Yes

 isolation Specify isolation technology No. Depends on docker run --isolation .

 labels Add metadata by using labels Yes

 links Link to containers in another
service Yes

 logging , log_driver ,
 log_opt Logging configuration No. Depends on docker run --log-driver

and --log-opt .

 net Network mode (version 1) Yes

 network_mode Network mode (version 2) Yes

 networks Networks to join Yes

 aliases Aliases for this service on the
network Yes

 ipv4_address , ipv6_address Static IP address for containers Yes for IPv4. IPv6 is not supported.

 link_local_ips List of link-local IPs No. Depends on docker run --link-local-ip

 pid Sets PID mode No. Depends on docker run --pid .

 ports Expose ports Yes

 security-opt Override the default labeling
scheme for containers

No. This option only applies to Windows
containers, which are not supported.

 stop-signal Sets an alternative signal to
stop the container. Yes

 stop-grace-period Specify how long to wait
stopping a container No

 sysctls Kernel parameters to set in the
container No

 ulimits Override the default ulimits for
a container No

 userns_mode Disables the user namespace No

 volumes , volume_driver Mount paths or named volumes Yes

 volumes_from Mount volumes from another
service or container No

The following Docker run options are supported if their docker run counterpart is supported: security_opt ,
 stop_grace_period , stop_signal , sysctls , ulimits , userns_mode , cpu_shares , cpu_quota , cpuset , domainname ,
 hostname , ipc , mac_address , mem_limit , memswap_limit , oom_score_adj , privileged , read_only , restart , shm_size ,

12

https://docs.docker.com/compose/compose-file/compose-file-v2/#extrahosts
https://docs.docker.com/compose/compose-file/compose-file-v2/#groupadd
https://docs.docker.com/compose/compose-file/compose-file-v2/#healthcheck
https://docs.docker.com/compose/compose-file/compose-file-v2/#image
https://docs.docker.com/compose/compose-file/compose-file-v2/#isolation
https://docs.docker.com/compose/compose-file/compose-file-v2/#labels
https://docs.docker.com/compose/compose-file/compose-file-v2/#links
https://docs.docker.com/compose/compose-file/compose-file-v2/#logging
https://docs.docker.com/compose/compose-file/compose-file-v1/#net
https://docs.docker.com/compose/compose-file/compose-file-v2/#networkmode
https://docs.docker.com/compose/compose-file/compose-file-v2/#networks
https://docs.docker.com/compose/compose-file/compose-file-v2/#aliases
https://docs.docker.com/compose/compose-file/compose-file-v2/#ipv4address-ipv6address
https://docs.docker.com/compose/compose-file/compose-file-v2/#linklocalips
https://docs.docker.com/compose/compose-file/compose-file-v2/#pid
https://docs.docker.com/compose/compose-file/compose-file-v2/#ports
https://docs.docker.com/compose/compose-file/compose-file-v2/#securityopt
https://docs.docker.com/compose/compose-file/compose-file-v2/#stopsignal
https://docs.docker.com/compose/compose-file/compose-file-v2/#stopgraceperiod
https://docs.docker.com/compose/compose-file/compose-file-v2/#sysctls
https://docs.docker.com/compose/compose-file/compose-file-v2/#ulimits
https://docs.docker.com/compose/compose-file/compose-file-v2/#usernsmode
https://docs.docker.com/compose/compose-file/compose-file-v2/#volumes-volumedriver
https://docs.docker.com/compose/compose-file/compose-file-v2/#volumesfrom
https://docs.docker.com/compose/compose-file/compose-file-v2/#cpushares-cpuquota-cpuset-domainname-hostname-ipc-macaddress-memlimit-memswaplimit-memswappiness-oomscoreadj-privileged-readonly-restart-shmsize-stdinopen-tty-user-workingdir

 stdin_open , tty , user , working_dir .

Volume Configuration Options

Option Compose File Reference Supported

 driver Specify driver to use for this volume Yes

 driver_opts Specify options to pass to the driver for this volume Yes

 labels Add metadata to containers Yes

 external Specify that volume has been created outside of Compose Yes

Network Configuration Options

Option Compose File Reference Supported

 driver Specify driver to use for this network Yes

 driver_opts Specify options to pass to the driver for this network No

 enable_ipv6 Enables IPv6 No. IPv6 is not supported.

 ipam Specify custom IPAM configuration Yes

 internal Create an externally isolated overlay network Yes

 labels Add metadata to containers Yes

 external Specify that network has been created outside of Compose Yes

13

https://docs.docker.com/compose/compose-file/compose-file-v2/#driver
https://docs.docker.com/compose/compose-file/compose-file-v2/#driveropts
https://docs.docker.com/compose/compose-file/compose-file-v2/#labels-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#external
https://docs.docker.com/compose/compose-file/compose-file-v2/#driver-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#driveropts-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#enableipv6
https://docs.docker.com/compose/compose-file/compose-file-v2/#ipam
https://docs.docker.com/compose/compose-file/compose-file-v2/#internal
https://docs.docker.com/compose/compose-file/compose-file-v2/#labels-2
https://docs.docker.com/compose/compose-file/compose-file-v2/#external-1

Supported Dockerfile Instructions
Some Dockerfile instructions are directives to the build process and a subset of them are directives to the container
engine when a container is run. The latter is an important consideration when it comes to putting a Docker image into
production.

For more information on Dockerfile instructions, see the Dockerfile reference here.

This topic provides information about which of the runtime Dockerfile instructions that vSphere Integrated Containers
Engine 1.4 supports.

Option Dockerfile Reference Supported

 LABEL Add metadata to an image Yes

 EXPOSE Expose a port Not yet supported. Port mappings need to be explicitly
declared with docker run -p

 ENV Set an environment
variable Yes

 ENTRYPOINT Set the executable to be
run on start Yes

 CMD Set commands to be run
on start Yes

 USER Set the user that runs the
main process Yes

 WORKDIR Set the working directory Yes

 STOPSIGNAL Set a stop signal for the
container

Not yet supported. A stop signal can be explicitly declared with
 docker run --stop-signal

 HEALTHCHECK Set a health check process No health check options supported yet.

 SHELL Set a default shell Yes

14

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/reference/builder/#expose
https://docs.docker.com/engine/reference/builder/#env
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/reference/builder/#stopsignal
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#shell

Obtain a Virtual Container Host
vSphere Integrated Containers Engine does not currently provide an automated means of obtaining virtual container
hosts (VCHs).

When the vSphere administrator uses vic-machine create to deploy a VCH, the VCH endpoint VM obtains an IP
address. The IP address can either be static or be obtained from DHCP. As a container developer, you require the IP
address of the VCH endpoint VM when you run Docker commands.

You can see the addresses of the VCHs that are associated with your project by logging in to vSphere Integrated
Containers Management Portal and selecting Home > Infrastructure > Container Hosts.

If the vSphere administrator deploys VCHs with TLS authentication, vic-machine create generates a file named
 vch_name.env . The env file contains Docker environment variables that are specific to the VCH. You can use the
contents of the env file to set environment variables in your Docker client. Similarly, if the vSphere administrator
deployed the VCH with TLS authentication of clients, you must obtain the client certificates. The vSphere
administrator or an automated provisioning service for VCHs could potentially provide the env file to you when you
request a VCH. For more information about setting environment variables and client certificates for VCHs in your
Docker client, see Configure the Docker Client for Use with vSphere Integrated Containers.

15

Configure the Docker Client for Use with vSphere
Integrated Containers
If your container development environment uses vSphere Integrated Containers, you must run Docker commands
with the appropriate options, and configure your Docker client accordingly.

vSphere Integrated Containers Engine 1.4 supports Docker client 1.13.0. The supported version of the Docker API is
1.25.

Connecting to the VCH
Using Docker Environment Variables
Install the vSphere Integrated Containers Registry Certificate

Obtain the vSphere Integrated Containers Registry CA Certificate
Configure the Docker Client on Linux
Configure the Docker Client on Windows

Using vSphere Integrated Containers Registry with Content Trust

Connecting to the VCH
How you connect to your virtual container host (VCH) depends on the security options with which the vSphere
administrator deployed the VCH.

If the VCH implements any level of TLS authentication, you connect to the VCH at vch_address:2376 when you
run Docker commands.
If the VCH implements mutual authentication between the Docker client and the VCH by using both client and
server certificates, you must provide a client certificate to the Docker client so that the VCH can verify the client's
identity. This configuration is commonly referred to as tlsverify in documentation about containers and Docker.
You must obtain a copy of the client certificate that was either used or generated when the vSphere administrator
deployed the VCH. You can provide the client certificate to the Docker client in either of the following ways:

By using the --tlsverify , --tlscert , and --tlskey options when you run Docker commands. You must
also add --tlscacert if the server certificate is signed by a custom Certificate Authority (CA). For example:

docker -H vch_address:2376
--tlsverify
--tlscert=path_to_client_cert/cert.pem
--tlskey=path_to_client_key/key.pem
--tlscacert=path/ca.pem
info

By setting Docker environment variables:

DOCKER_CERT_PATH=client_certificate_path/cert.pem
DOCKER_TLS_VERIFY=1

16

If the VCH uses server certificates but does not authenticate the Docker client, no client certificate is required
and any client can connect to the VCH. This configuration is commonly referred to as no-tlsverify in
documentation about containers and Docker. In this configuration, the VCH has a server certificate and
connections are encrypted, requiring you to run Docker commands with the --tls option. For example:

docker -H vch_address:2376 --tls info

In this case, do not set the DOCKER_TLS_VERIFY environment variable. Setting DOCKER_TLS_VERIFY to 0 or to false
has no effect.
If TLS is completely disabled on the VCH, you connect to the VCH at vch_address:2375. Any Docker client can
connect to the VCH and communications are not encrypted. As a consequence, you do not need to specify any
additional TLS options in Docker commands or set any environment variables. This configuration is not
recommended in production environments. For example:

docker -H vch_address:2375 info

Using Docker Environment Variables
If the vSphere administrator deploys the VCHs with TLS authentication, vic-machine create generates a file named
 vch_name.env . The env file contains Docker environment variables that are specific to the VCH. You can use the env
file to set environment variables in your Docker client.

The contents of the env files are different depending on the level of authentication with which the VCH was
deployed.

Mutual TLS authentication with client and server certificates:

DOCKER_TLS_VERIFY=1
DOCKER_CERT_PATH=client_certificate_path\vch_name
DOCKER_HOST=vch_address:2376

TLS authentication with server certificates without client authentication:

DOCKER_HOST=vch_address:2376

No env file is generated if the VCH does not implement TLS authentication.

For information about how to obtain the env file, see Obtain a VCH. For information about the env files in Docker,
see docker-machine env in the Docker documentation.

Install the vSphere Integrated Containers Registry
Certificate

17

https://docs.docker.com/machine/reference/env/

If your development environment uses vSphere Integrated Containers Registry or another private registry server that
uses CA server certificates, you must pass the registry's CA certificate to the Docker client. The vSphere
administrator must also have configured the VCH to access the registry.

For information about how vSphere administrators deploy VCHs so that they can access a private registry, see
Connect Virtual Container Hosts to Registries.

The level of security of the connection between the Docker client and the VCH is independent from the level of
security of the connection between the Docker client and the registry. Connections between the Docker client and the
registry can be secure while connections between the Docker client and the VCH are insecure, and the reverse.

NOTE: VCHs cannot to connect to vSphere Integrated Containers Registry instances as insecure registries.
Connections to vSphere Integrated Containers Registry always require HTTPS and a certificate.

Obtain the vSphere Integrated Containers Registry CA Certificate

To access the vSphere Integrated Containers Registry CA certificate, log in to vSphere Integrated Containers
Management Portal with an account that has at least the Management Portal administrator role. For information about
logging in to vSphere Integrated Containers Management Portal, see Logging In to the Management Portal.

1. Go to Administration -> Configuration.
2. Click the download link for Registry Root Certificate.

Configure the Docker Client on Linux

This example configures a Linux Docker client so that you can log into vSphere Integrated Containers Registry by
using its IP address.

1. Copy the certificate file to the Linux machine on which you run the Docker client.
2. Switch to sudo user.

$ sudo su

3. Create a subfolder in the Docker certificates folder, using the registry's IP address as the folder name.

$ mkdir -p /etc/docker/certs.d/registry_ip

4. Copy the registry's CA certificate into the folder.

$ cp ca.crt /etc/docker/certs.d/registry_ip/

5. Open a new terminal and attempt to log in to the registry server, specifying the IP address of the registry server.

$ docker login registry_ip

6. If the login fails with a certificate error, restart the Docker daemon.

$ sudo systemctl daemon-reload

18

$ sudo systemctl restart docker

Configure the Docker Client on Windows

To pass the registry's CA certificate to a Docker client that is running on Windows 10, use the Windows Certificate
Import Wizard.

1. Copy the ca.crt file to the Windows 10 machine on which you run the Docker client.
2. Right-click the ca.crt file and select Install Certificate.
3. Follow the prompts of the wizard to install the certificate.
4. Restart the Docker daemon:

Click the up arrow in the task bar to show running tasks.
Right-click the Docker icon and select Settings.
Select Reset and click Restart Docker.

5. Log in to the registry server.

docker login registry_ip

Using vSphere Integrated Containers Registry with Content
Trust
vSphere Integrated Containers Registry provides a Docker Notary server that allows you to implement content trust
by signing and verifying the images in the registry. Management Portal administrators enable or disable content trust
at the project level in vSphere Integrated Containers Management Portal.

If you the project that you are working on implements content trust, you must pass the registry's CA certificate to your
Docker client and set up Docker Content Trust. By default, the vSphere Integrated Containers Registry Notary server
runs on port 4443 on the vSphere Integrated Containers appliance.

Enabling content trust on a project automatically modifies the registry whitelist settings of any VCHs that are
registered with the project. Consequently, when content trust is enabled, the VCHs in the project can only pull signed
and verified images from the registry instance that is running in the vSphere Integrated Containers appliance.

For general information about Docker Notary and content trust, see Content trust in Docker in the Docker
documentation.
For information about content trust in vSphere Integrated Containers, see Enabling Content Trust in Projects in
vSphere Integrated Containers Management Portal Administration.
For information about how enabling content trust affects VCHs, see VCH Whitelists and Content Trust in vSphere
Integrated Containers for vSphere Administrators.

Procedure

1. If you are using a self-signed certificate, copy the CA root certificate to the Docker certificates folder.

To pass the certificate to the Docker client, follow the procedure in Using vSphere Integrated Containers Registry
above.

19

https://docs.docker.com/engine/security/trust/content_trust/

2. If you are using a self-signed certificate, copy the CA certificate to the Docker TLS service.

$ cp ca.crt ~/.docker/tls/registry_ip:4443/

3. Enable Docker Content Trust by setting environment variables.

export DOCKER_CONTENT_TRUST=1
export DOCKER_CONTENT_TRUST_SERVER=https://registry_ip:4443

4. (Optional) Set an alias for Notary.

By default, the local directory for storing meta files for the Notary client is different from the folder for the Docker
client. Set an alias to make it easier to use the Notary client to manipulate the keys and meta files that Docker
Content Trust generates.

alias notary="notary -s https//registry_ip:4443 -d ~/.docker/trust --tlscacert
/etc/docker/certs.d/registry_ip/ca.crt"

5. When you push an image for the first time, define and confirm passphrases for the root key and the repository
key for that image.

The root key is generated at:

/root/.docker/trust/private/root_keys

The repository key is generated at:

/root/.docker/trust/private/tuf_keys/[registry_name]/[image_path]

You can see that the signed image that you pushed is marked with a green check on the Project Repositories page in
the Management Portal.

20

Use and Limitations of vSphere Integrated Containers
Engine
vSphere Integrated Containers Engine currently includes the following capabilities and limitations:

Supported Docker Features
This version of vSphere Integrated Containers Engine supports these features:

 docker-compose

Pulling images from Docker hub and private registries
Named data volumes
Anonymous data volumes
Sharing concurrent NFS share points between containers
Bridged networks
External networks
Port mapping
Network links/aliases

Unsupported Docker Features
This version of vSphere Integrated Containers Engine does not support these features:

Pulling images via image digest
Mapping a local host folder to a container volume
Mapping a local host file to a container
 docker push

 docker build

For limitations of using vSphere Integrated Containers with volumes, see Using Volumes with vSphere Integrated
Containers Engine.

Limitations of vSphere Integrated Containers Engine
vSphere Integrated Containers Engine includes these limitations:

If you do not configure a PATH environment variable, or if you create a container from an image that does not
supply a PATH , vSphere Integrated Containers Engine provides a default PATH .
You can resolve the symbolic names of a container from within another container, except in the following cases:

Aliases
IPv6
Service discovery

21

Containers can acquire DHCP addresses only if they are on a network that has DHCP.
When you use a standard Docker Engine, an image can have a maximum of 120 layers. When you use a
vSphere Integrated Containers Engine virtual container host (VCH), an image can have a maximum of 90 layers.
For more information, see Pulling Images into VCHs Fails with Image Store Error in the Troubleshooting section.

Using docker-compose with TLS
vSphere Integrated Containers supports TLS v1.2, so you must configure docker-compose to use TLS 1.2. However,
 docker-compose does not allow you to specify the TLS version on the command line. You must use environment
variables to set the TLS version for docker-compose . For more information, see docker-compose issue 4651.
Furthermore, docker-compose has a limitation that requires you to set TLS options either by using command line
options or by using environment variables. You cannot use a mixture of both command line options and environment
variables.

To use docker-compose with vSphere Integrated Containers and TLS, set the following environment variables:

COMPOSE_TLS_VERSION=TLSv1_2
DOCKER_TLS_VERIFY=1
DOCKER_CERT_PATH="path to your certificate files"

The certificate file path must lead to CA.pem , key.pem , and cert.pem . You can run docker-compose with the following
command:

docker-compose -H vch_address up

22

https://github.com/docker/compose/issues/4651

Building and Pushing Images with the dch-photon
Docker Engine
vSphere Integrated Containers Engine is an enterprise container runtime that you use as a deployment endpoint for
container VMs. As such, it does not have native docker build or docker push capabilities. The job of building and
pushing container images is typically part of a continuous integration (CI) pipeline, that does this by using standard
Docker Engine instances.

vSphere Integrated Containers can deploy standard Docker Engine instances for you, in the form of a container
image repository named dch-photon . The dch-photon image allows you to deploy container VMs that run a Docker
Engine instance, known as a Docker container host (DCH), that runs on Photon OS. You can deploy any number of
these dch-photon Docker Engine instances to perform docker build and docker push operations as part of your CI
infrastructure.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13. The dch-photon image is pre-loaded in the
 default-project in vSphere Integrated Containers Registry, or you can pull it from Docker Hub.

Advantages of Using dch-photon
Requirements for Using dch-photon

Anonymous dch-photon Volumes
Using dch-photon with vSphere Integrated Containers Registry

Advantages of Using dch-photon
Virtual container hosts (VCHs) focus on running pre-existing images in production. An advantage of using VCHs over
standard Docker Engine instances is the opinionated, strongly isolated provisioning model of container VMs as
compared to standard containers. VCHs assume that image creation happens elsewhere in the CI process. vSphere
Integrated Containers provides the dch-photon Docker Engine as a container image so that you can easily deploy
Docker Engine instances to act as build slaves in your CI infrastructure.

By bringing the ephemeral quality of running the Docker Engine itself as a container VM, dch-photon provides the
following advantages:

Eliminates snowflake deployments of Docker Engine.
Promotes efficient use of resources by providing an easy mechanism for provisioning and removing Docker
Engine instances that fits well with CI automation.

The workflow for using dch-photon Docker Engines is as follows:

1. Pull the dch-photon image from vSphere Integrated Containers Registry and instantiate it.
2. Use the Docker Engine running in dch-photon to build and push an image to vSphere Integrated Containers

Registry.
3. Remove the dch-photon container VM.
4. Pull the new image from vSphere Integrated Containers Registry into a VCH and run it in production.

23

https://vmware.github.io/photon/

Because of the ephemeral quality of the dch-photon Docker Engine and because it is itself a container image, this
process can be scripted or integrated with an existing CI tool, such as Jenkins.

Requirements for Using dch-photon
To use dch-photon , your environment must satisfy the following conditions:

Configure your local Docker client to use the vSphere Integrated Containers Registry certificate. For information
about how to obtain the registry certificate and pass it to the Docker client, see the section Install the vSphere
Integrated Containers Registry Certificate in Configure the Docker Client for Use with vSphere Integrated
Containers.
You have access to a VCH that the vSphere administrator configured so that it can connect to the registry to pull
the dch-photon image. The VCH must also have a volume store named default . For information about how
deploy a VCH that is suitable for use with dch-photon , see the Deploy a Virtual Container Host with a Volume
Store and vSphere Integrated Containers Registry Access in vSphere Integrated Containers for vSphere
Administrators.

Anonymous dch-photon Volumes

Each dch-photon container VM that you run creates an anonymous volume in the default volume store. By default,
all of the images you pull into dch-photon go into this volume. The anonymous volume has a 2 GB limit. If you require
more than 2 GB to store images and container state, you must explicitly specify a volume with a higher limit when you
run dch-photon . For information about how to specify a larger volume, see Expand the Root Disk on a dch-photon
Docker Engine.

The anonymous volumes that dch-photon creates are not deleted when you delete a dch-photon container VM. This
is by design, so that you can persist your image cache and container state beyond the lifespan of an individual dch-
photon container VM. When you delete dch-photon container VMs, you must manually remove the anonymous
volume from the volume store if you do not require them.

Using dch-photon with vSphere Integrated Containers
Registry
For dch-photon to be able to authenticate with vSphere Integrated Containers Registry, it needs to have the registry's
CA certificate. The purpose of dch-photon is primarily to build images and push them to registries, so each dch-
photon instance must be able to authenticate with the registry to which it pushes. Even if you use the same Docker
client to pull and run the dch-photon image as you use to push built images back to the registry, the dch-photon
container VM still needs to have the appropriate registry certificate so that it can successfully push images.

You can provide the certificate to dch-photon in one of two ways:

Build a custom dch-photon image that has the certificate embedded in it. This method is preferable since you
only need to perform the operation once.
Manually copy the certificate in to a dch-photon container running in a VCH by using docker cp .

24

When you have deployed dch-photon with the registry certificate, you can use it to build an image and push that
image from dch-photon to vSphere Integrated Containers Registry. You can then pull the image from the registry into
a VCH for deployment.

For an example of how to deploy a dch-photon instance that you can use with vSphere Integrated Containers
Registry, see Deploy a Test dch-photon Instance.

For more advanced use of dch-photon , see Advanced Use of dch-photon .

25

Deploy a Test dch-photon Instance
To use dch-photon with vSphere Integrated Containers Registry and a VCH, you must perform the following tasks, in
order:

1. Obtain an appropriately configured VCH by following the procedure in Deploy a Virtual Container Host with a
Volume Store and vSphere Integrated Containers Registry Access.

2. Provide the vSphere Integrated Containers Registry certificate to a dch-photon instance in one of the following
ways:

Add the Registry Certificate to a Custom dch-photon Image. This is the recommended method because you
only need to perform it once.
Manually Add the Registry Certificate to a dch-photon VM. This method must be repeated for every dch-
photon instance that you deploy.

3. Test the dch-photon instance by following the procedure in Build, Push, and Pull an Image with dch-photon .

26

Add the Registry Certificate to a Custom dch-photon Image
The recommended method of passing the vSphere Integrated Containers Registry CA certificate to dch-photon is to
create a custom dch-photon image that includes the certificate. You can then push the image to the vSphere
Integrated Containers Registry and verify that it works by deploying it to a virtual container host (VCH).

By creating a custom image, you can deploy multiple instances of dch-photon that have the correct registry certificate,
without having to manually copy the certificate into each dch-photon container VM.

Prerequisites

You have a known user account that has at least the Developer role in the default-project in vSphere Integrated
Containers Management Portal.
You have an instance of Docker Engine running on your local sytem.
You installed the CA certificate for vSphere Integrated Containers Registry in your local Docker client. For
information about how to install the registry certificate in a Docker client, see Install the vSphere Integrated
Containers Registry Certificate.
You have access to a VCH that the vSphere administrator configured so that it can connect to the registry to pull
the dch-photon image. The VCH must also have a volume store named default . For information about how
deploy a VCH that is suitable for use with dch-photon , see the Deploy a Virtual Container Host with a Volume
Store and vSphere Integrated Containers Registry Access in vSphere Integrated Containers for vSphere
Administrators.
For simplicity, this example uses a VCH that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the
Docker commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS
authentication, see Connecting to the VCH.

Procedure

1. Log in to vSphere Integrated Containers Registry from your local Docker client.

docker login registry_address

2. Pull the dch-photon image into the image cache in your local Docker client.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13.

docker pull registry_address/default-project/dch-photon:1.13

3. Make a new folder and copy the vSphere Integrated Containers Registry certificate into it.

4. In the new folder, create a Dockerfile with the following format:

 FROM registry_address/default-project/dch-photon:1.13

 COPY ca.crt /etc/docker/certs.d/registry_address/ca.crt

27

5. In the same folder, build the Dockerfile as a new image and give it a meaningful new tag.

docker build -t registry_address/default-project/dch-photon:1.13-cert .

6. Push the new image into vSphere Integrated Containers Registry.

docker push registry_address/default-project/dch-photon:1.13-cert

7. (Optional) Log in to vSphere Integrated Containers Registry from the VCH.

If you use the same Docker client as in the preceding steps it is already authenticated with the registry. In this
case, you do not need to log in again when you run commands against the VCH. If you use a different Docker
client to run commands against the VCH, or you logged out, you must log in to the registry.

docker -H vch_address:2376 --tls login registry_address

8. Pull the image from vSphere Integrated Containers Registry into the VCH and run it with the name build-slave .

This example runs dch-photon behind a port mapping, that exposes the HTTP port (2375) of the dch-photon
instance on port 12375 of the VCH. You can also deploy dch-photon on a container network.

docker -H vch_address:2376 --tls run --name build-slave -d -p 12375:2375
registry_address/default-project/dch-photon:1.13-cert

Result

You have a custom dch-photon image in your vSphere Integrated Containers Registry that contains the correct
certificate so that it can build, pull, and push images to and from that registry.
You deployed a dch-photon container VM named build-slave from that image, that exposes Docker Engine on
port 12375 of your VCH.

What to Do Next

To test the dch-photon Docker Engine, see Build, Push, and Pull an Image with dch-photon .

28

Manually Add the Registry Certificate to a dch-photon
Container VM
To manually add the vSphere Integrated Containers CA certificate to dch-photon , you can create a dch-photon
container VM, then use docker cp to copy the certificate into it.

NOTE: This method requires you to copy the certificate to every dch-photon container VM that you deploy. To avoid
having to copy the certificate every time, the recommended method is to create a custom dch-photon image. For
information about creating a custom image, see Add the Registry Certificate to a Custom dch-photon Image.

Prerequisites

You have a known user account that has at least the Developer role in the default-project in vSphere Integrated
Containers Management Portal.
You have an instance of Docker Engine running on your local sytem.
You installed the CA certificate for vSphere Integrated Containers Registry in your local Docker client. For
information about how to install the registry certificate in a Docker client, see Install the vSphere Integrated
Containers Registry Certificate.
You have access to a virtual container host (VCH) that the vSphere administrator configured so that it can
connect to the registry to pull the dch-photon image. The VCH must also have a volume store named default .
For information about how deploy a VCH that is suitable for use with dch-photon , see the Deploy a Virtual
Container Host with a Volume Store and vSphere Integrated Containers Registry Access in vSphere Integrated
Containers for vSphere Administrators.
For simplicity, this example uses a VCH that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the
Docker commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS
authentication, see Connecting to the VCH in Configure the Docker Client for Use with vSphere Integrated
Containers.

Procedure

1. Log in to vSphere Integrated Containers Registry from your VCH.

docker -H vch_address:2376 --tls login registry_address

2. Pull the dch-photon image into the image cache in your VCH.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13.

docker -H vch_address:2376 --tls pull registry_address/default-project/dch-photon:1.13

3. Create a dch-photon container VM named build-slave in your VCH, but do not start it.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13.

29

The container should be stopped because the Docker Engine instance that it runs must restart so that it can
recognize the new certificate after you have copied it to the container. If you have already deployed dch-photon ,
use docker stop to stop it.

This example runs dch-photon behind a port mapping, that exposes the HTTP port (2375) of the dch-photon
instance on port 12375 of the VCH.

docker -H vch_address:2376 --tls create --name build-slave -p 12375:2375
registry_address/default-project/dch-photon:1.13

4. Create the required folder structure on your local machine.

mkdir -p certs.d/registry_address

5. Copy the certificate into the new folder.

cp path_to_cert/ca.crt certs.d/registry_address

6. Use docker cp to copy the certificate from your local system into the dch-photon container VM named build-
slave that is running in the VCH.

Docker Engine stores registry certificates in a folder named /etc/docker/certs.d/registry_address .

 docker -H vch_address:2376 --tls cp certs.d build-slave:/etc/docker

7. Restart the Docker host to load the certificate.

docker -H vch_address:2376 --tls start build-slave

Result

You have a running Docker host named build-slave , that is exposed on port 12375 of your VCH. You configured
 build-slave to push and pull images to and from vSphere Integrated Containers Registry.

What to Do Next

To test the Docker host, see Build, Push, and Pull an Image with dch-photon .

30

Build, Push, and Pull an Image with dch-photon
After you have loaded the vSphere Integrated Containers Registry certificate into a dch-photon container VM, you can
test the dch-photon Docker host by building an image and pushing it to vSphere Integrated Containers Registry.
Then, you can pull the image into a virtual container host (VCH) to deploy it.

Prerequisites

You performed one of the procedures in either Add the Registry Certificate to a Custom Image or Manually Add
the Registry Certificate to a dch-photon VM to create an instance of the dch-photon Docker Engine, named
 build-slave .

The build-slave container VM includes the CA certificate of your vSphere Integrated Containers Registry
instance.
The build-slave container VM is exposed on port 12375 of the VCH.

For simplicity, this example uses a VCH that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the
Docker commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS
authentication, see Connecting to the VCH in Configure the Docker Client for Use with vSphere Integrated
Containers.
This procedure assumes that the VCH uses the same network for the client and public networks. If a VCH is
deployed using separate client and public networks, the VCH endpoint is exposed on the client network. When
you deploy a dch-photon Docker Engine on the VCH, it is exposed on the public network and the commands in
the procedure fail.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13.

Procedure

1. Run docker info to test that the Docker host running in the dch-photon container VM has started correctly.

By specifying port 12375 you direct the Docker client to the dch-photon Docker Engine that is running in the
VCH, rather than to the VCH itself.

docker -H vch_address:12375 info

2. Test that you can authenticate with the registry from the dch-photon container VM.

You should not need to log in if your client is already authenticated with the registry, but the login command is
included here for clarity. You specify port 12375 to run the login command on the dch-photon Docker Engine,
rather than on the VCH.

docker -H vch_address:12375 login registry_address

3. Test that you can pull images from the registry into the dch-photon container VM.

Specify port 12375 to run the pull command on the dch-photon Docker Engine.

31

docker -H vch_address:12375 pull registry_address/default-project/dch-photon:1.13

4. Remove the test image from the dch-photon Docker Engine.

Specify port 12375 to run the rmi command on the dch-photon Docker Engine.

docker -H vch_address:12375 rmi registry_address/default-project/dch-photon:1.13

5. Create a simple Dockerfile and save it in the current directory.

Copy the following text into Dockerfile :

FROM debian:latest

RUN apt-get update -y && apt-get install -y fortune-mod fortunes

ENTRYPOINT ["/usr/games/fortune", "-s"]

6. Build an image named test-container from the Dockerfile , and tag it with the path to a project in vSphere
Integrated Containers Registry.

Specify port 12375 to run the build command on the dch-photon Docker Engine.

docker -H vch_address:12375 build -t registry_address/default-project/test-container .

7. Push the image from the dch-photon Docker host to the registry.

Specify port 12375 to run the push command on the dch-photon Docker Engine.

docker -H vch_address:12375 push registry_address/default-project/test-container

8. Pull the image from the registry into the VCH.

Specify port 2376 to run the pull command on the VCH.

docker -H vch_address:2376 --tls pull registry_address/default-project/test-container

9. Instantiate a container from the test-container image on the VCH.

Specify port 2376 to run the test container on the VCH.

docker -H vch_address:2376 --tls run --name test-container registry_address/default-
project/test-container

10. List the containers that are running and stopped in the VCH.

32

Specify port 2376 to run the ps -a command on the VCH.

docker -H vch_address:2376 --tls ps -a

11. (Optional) Log in to vSphere Integrated Containers Management Portal.

You should see the test-container image in the list of repositories for default-project and the test-container
container VM in the list of containers.

Result

You built a test-container image in a dch-photon Docker Engine and pushed it from the dch-photon instance to
vSphere Integrated Containers Registry. You pulled the test-container image from the registry into a VCH and ran it.
The resulting test-container container VM appears in the list of containers that have run in the VCH.

NOTE: Each dch-photon Docker Engine that you run creates an anonymous volume in the default volume store.
This anonymous volume is not deleted when you delete a dch-photon container VM. When you delete dch-photon
container VMs, you must manually remove the anonymous volume from the volume store.

33

Advanced Use of dch-photon
For information about how to use dch-photon with TLS authentication and with other registries than vSphere
Integrated Containers Registry, see Advanced dch-photon Deployment Options.

For information about to use dch-photon with large images or with large numbers of images, see Expand the Root
Disk on a dch-photon Docker Engine.

For information about configuring dch-photon to use proxy servers, see Configure dch-photon to Use Proxy Servers.

For information about configuring dch-photon to connect to registries that use a custom CA, see Add a Custom
Registry Certificate Authority to dch-photon .

For information about instantiating a Docker swarm with dch-photon , see Automating Swarm Creation with vSphere
Integrated Containers.

NOTE: Using dch-photon to instantiate Docker swarm is not officially supported.

34

https://blogs.vmware.com/cloudnative/2017/10/03/automating-swarm-creation-with-vic-1-2/

Advanced dch-photon Deployment Options
You do not need to specify any options when you use docker run to deploy dch-photon Docker Engine instances for
use with vSphere Integrated Containers Registry. However, you can optionally specify dch-photon options in the
 docker run command to run the dch-photon Docker Engine with TLS authentication.

You can also specify dch-photon options to connect dch-photon Docker Engine instances to registries other than
vSphere Integrated Containers Registry.

vSphere Integrated Containers 1.4.x supports dch-photon version 1.13.

 dch-photon Options
Using dch-photon with TLS Authentication

With Remote Verification
Without Remote Verification
With Automatically Generated Certificates

 dch-photon Options
You can specify the following options when you deploy dch-photon Docker Engine instances:

 -insecure-registry : Enable insecure registry communication. Set this option multiple times to create a list of
registries to which dch-photon applies no security considerations. You cannot use this option when connecting to
vSphere Integrated Containers Registry.
 -local : Do not bind the Docker API to external interfaces. Set this option to prevent the Docker API endpoint
from binding to the external interface. Docker Engine only listens on /var/run/docker.sock .
 -storage : Sets the Docker storage driver that Docker Engine uses. By default, the storage driver is overlay2 ,
which is the recommended driver when running Docker Engine as a container VM.
 -tls : Use TLS authentication for all connections. Implied by -tlsverify . This option enables secure
communication with no verification of the remote end. To use custom certificates, copy them into the /certs
folder in the dch-photon container VM. Certificates are generated automatically in /certs if you do not provide
them.

Server certificate: /certs/docker.crt
Key for the server certificate: /certs/docker.key

 -tlsverify : Use TLS and authentication for all connections and verify the remote end. To use custom
certificates, copy them into the /certs folder in the dch-photon container. Certificates are generated
automatically in /certs if you do not provide them.

Server certificate: /certs/docker.crt
Key for the server certificate: /certs/docker.key
CA certificate: /certs/ca.crt
CA key: /certs/ca-key.pem
Client certificate: /certs/docker-client.crt
Client key: /certs/docker-client.key

35

 vic-ip : Set the IP address of the virtual container host for use in automatic certificate generation when running
 dch-photon containers behind a port mapping.

Using dch-photon with TLS Authentication
To configure the same certificate-based authentication for a dch-photon as you have for your VCH endpoint, you
specify the -tls or -tlsverify option when you run the dch-photon the container VM. You then copy the appropriate
certificates into the dch-photon container VM.

With Remote Verification

1. Create a dch-photon container without starting it.

This example runs dch-photon behind a port mapping and specifies the -tlsverify option.

docker create -p 12376:2376 --name dch-photon-tlsverify registry_address/default-
project/dch-photon:1.13 -tlsverify

2. Copy the certificates into the dch-photon container.

 docker cp cert_folder/ca.pem dch-photon-tlsverify:/certs/ca.crt

 docker cp cert_folder/server-cert.pem dch-photon-tlsverify:/certs/docker.crt

 docker cp cert_folder/server-key.pem dch-photon-tlsverify:/certs/docker.key

3. Start the dch-photon container.

docker start dch-photon-tlsverify

4. Connect to the dch-photon container.

docker -H vch_adress:12376 --tlsverify info

Without Remote Verification

1. Create a dch-photon container without starting it.

This example runs dch-photon behind a port mapping and specifies the -tls option.

docker create -p 12376:2376 --name dch-photon-tls registry_address/default-project/dch-
photon:1.13 -tls

36

2. Copy the certificates into the dch-photon container.

 docker cp cert_folder/server-cert.pem dch-photon-tls:/certs/docker.crt

 docker cp cert_folder/server-key.pem dch-photon-tls:/certs/docker.key

3. Start the dch-photon container.

docker start dch-photon-tls

4. Connect to the dch-photon container.

docker -H vch_adress:12376 --tls info

With Automatically Generated Certificates

To generate certificates automatically, specify either -tls or -tlsverify . If the dch-photon container runs behind a
port mapping, specify the address of the VCH in the -vic-ip option. This address is used during certificate
generation.

docker run -p 12376:2376 --name dinv-build -v mycerts:/certs vmware/dch-photon -tlsverify
-vic-ip vch_adress

You can then use docker cp to copy the automatically generated certificates to your local Docker client.

37

Expand the Root Disk on a dch-photon Docker Engine
Depending on how many images you are planning to build in a dch-photon Docker Engine instance, you might need a
larger root disk than the default of 2GB.

To create a larger root disk, use the docker volume create command to create a disk of the desired size and then
mount it to the dch-photon container VM by using the -v option.

Prerequisites

You have access to a virtual container host (VCH) that the vSphere administrator configured so that it can
connect to the registry to pull the dch-photon image. The VCH must also have a volume store named default .
For information about how deploy a VCH that is suitable for use with dch-photon , see the Deploy a Virtual
Container Host with a Volume Store and vSphere Integrated Containers Registry Access in vSphere Integrated
Containers for vSphere Administrators.
You have an instance of Docker Engine running on your local sytem.
For simplicity, this example uses a VCH that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the
Docker commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS
authentication, see Connecting to the VCH.

Procedure

1. Log in to vSphere Integrated Containers Registry from your VCH.

docker -H vch_address:2376 --tls login registry_address

2. Pull the dch-photon image into the image cache in your local Docker client.

docker -H vch_address:2376 --tls pull registry_address/default-project/dch-photon:1.13

3. Create a volume of the desired size in your VCH.

docker -H vch_address:2376 --tls volume create --opt Capacity=30GB --name mydchdisk

4. Run the dch-photon container VM in the VCH, behind a port mapping.

docker -H vch_address:2376 --tls run --name DCH -d -v mydchdisk:/var/lib/docker -p
12375:2376 registry_address/default-project/dch-photon:1.13

5. Run docker info on the newly deployed docker host.

docker -H vch_address:12375 info

38

39

Configure dch-photon to Use Proxy Servers
If your environment uses proxies, you must configure dch-photon containers to use the proxy servers.

You can configure proxy servers on dch-photon containers either by setting environment variables at runtime, or by
creating a custom dch-photon image that includes the same variables.

Set Environment Variables at Runtime
When you run the dch-photon container, use the --env option to add the proxy servers as environment variables. If
you use this method, you must set the environment variables every time that you run dch-photon .

$ docker run
--detach
--env https_proxy=https://proxy.server.com:3128
--env http_proxy=http://proxy.server.com:3128
--publish 12376:2376
vmware/dch-photon:1.13
-tls
-vic-ip vch_adress

This command instantiates a dch-photon container with the following configuration:

Uses --detach to run the container in the background.
Sets HTTP and HTTPS proxy servers as environment variables.
Exposes the Docker API running in the dch-photon container to port 12376 on the virtual container host (VCH) on
which it is deployed.
Uses the dch-photon options -tls and -vic-ip to use auto-generated certificates without client verification
when connecting to the VCH.

Add Environment Variables to a Custom dch-photon Image
Build a new dch-photon image, for example named dch-photon-proxy based on the official one. To do this, you create
a Dockerfile that includes proxy environment variables:

dockerfile
FROM vmware/dch-photon:1.13
ENV http_proxy http://proxy.server.com:8080
ENV https_proxy https://proxy.server.com:8080

If you use this method, you do not need to specify the environment variables each time you run containers from the
custom dch-photon-proxy image.

40

41

Add a Custom Registry Certificate Authority to dch-
photon

If your registry uses a custom Certificate Authority (CA), you can add the CA root and other certificates to trusted root
of the dch-photon container.

You might need to do this if you have seen errors such as the following when attempting to log in to the registry:

Error response from daemon: Get https://exampleregistry:443/v2/: x509: certificate signed
by unknown authority

Prerequisites

You are using dch-photon as a container host in a CI or build/push setup.
You used a custom CA to generate registry certificates.

Procedure

1. Obtain the root and any secondary certificate files, and copy them into /etc/ssl/certs on your working machine.
2. Build a new dch-photon image, for example named dch-photon-ca .

To do this, you create a Dockerfile that extends the standard dch-photon image:

dockerfile
FROM vmware/dch-photon
COPY certs/*.crt /etc/ssl/certs/
RUN tdnf install -y openssl-c_rehash
ADD docker-entrypoint.sh /docker-entrypoint.sh

This image adds the following to dch-photon :

Copies the root and any secondary certificates into /etc/ssl/certs in the dch-photon container.
Installs openssl-c_rehash . You need to rehash the CAs so that programs such as OpenSSL can find newly
added CAs.
Add in a script named docker-entrypoint.sh to run when you run containers from this image. This is optional.

3. Create the docker-entrypoint.sh script.

This script injects the certificates into dch-photon and starts it.

sh
echo "Injecting CA certs"
openssl x509 -in /etc/ssl/certs/root.pem -text >> /etc/pki/tls/certs/ca-bundle.crt
openssl x509 -in /etc/ssl/certs/root-secondary.pem -text >> /etc/pki/tls/certs/ca-
bundle.crt
echo "Rehashing new certificates"

42

c_rehash

echo "Starting DinV"
exec /dinv -tls

Result

You can log in to the Docker registry that uses the custom CA from containers that you run from the dch-photon-ca
image.

43

Using Volumes with vSphere Integrated Containers
vSphere Integrated Containers supports the use of container volumes. You can create container volumes either in
volume stores on vSphere datastores or in NFS share points that you designate as volume stores. The vSphere
datastore or NFS share point houses the volume store and containers build volumes in that volume store.

IMPORTANT: To use container volume capabilities with vSphere Integrated Containers, the vSphere administrator
must configure one or more volume stores on the virtual container host (VCH). When the vSphere administrator
creates a VCH, they can specify a vSphere datastore or NFS share point to use to store container volumes. For
information about how to create VCHs with volume stores, see Specify Volume Stores. For information about how to
add volume stores to existing VCHs, see Add Volume Stores.

Obtain the List of Available Volume Stores
Obtain the List of Available Volumes
Create a Volume in a Volume Store
Creating Volumes from Images
Create a Container with a New Anonymous or Named Volume

Create a Container with a New Anonymous Volume
Create a Container with a Named Volume

Mount Existing vSphere-Backed Volumes on Containers
Sharing NFS-Backed Volumes Between Containers
Obtain Information About a Volume
Delete a Named Volume from a Volume Store
Delete a Container and the Anonymous Volumes Attached to It
Run a Container and Delete the Anonymous Volumes Attached to it when it Stops

For simplicity, the examples in this topic assume that the VCHs implement TLS authentication with self-signed server
certificates, with no client verification.

Obtain the List of Available Volume Stores
To obtain the list of volume stores that are available on a VCH, run docker info .

docker -H virtual_container_host_address:2376 --tls info

The list of available volume stores for this VCH appears in the docker info output under VolumeStores .

[...]
Storage Driver: vSphere Integrated Containers Backend Engine
VolumeStores: volume_store_1 volume_store_2 ... volume_store_n
vSphere Integrated Containers Backend Engine: RUNNING
[...]

44

Obtain the List of Available Volumes
To obtain a list of volumes that are available on a VCH, run docker volume ls .

docker -H virtual_container_host_address:2376 --tls volume ls

DRIVER VOLUME NAME
vsphere volume_1
vsphere volume_2
[...] [...]
vsphere volume_n

Create a Volume in a Volume Store
When you use the docker volume create command to create a volume, you can optionally provide a name for the
volume by specifying the --name option. If you do not specify --name , docker volume create assigns a random UUID
to the volume.

If the vSphere administrator created the VCH with one or more volume stores, but none of the volume stores are
named default , you must specify the name of an existing volume store in the --opt VolumeStore option. If you do
not specify --opt VolumeStore , docker volume create searches for a volume store named default , and returns an
error if no such volume store exists.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--name volume_name

If the vSphere administrator created the VCH with a volume store named default , you do not need to specify --
opt VolumeStore in the docker volume create command. If you do not specify a volume store name, the docker
volume create command automatically uses the default volume store if it exists.

docker -H virtual_container_host_address:2376 --tls volume create
--name volume_name

You can optionally set the capacity of a volume by specifying the --opt Capacity option when you run docker
volume create . If you do not specify the --opt Capacity option, the volume is created with the default capacity of
1024MB.

If you do not specify a unit for the capacity, the default unit will be in Megabytes.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--opt Capacity=2048
--name volume_name

45

To create a volume with a capacity in megabytes, gigabytes, or terabytes, include MB , GB , or TB in the value
that you pass to --opt Capacity . The unit is case insensitive.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--opt Capacity=10GB
--name volume_name

vSphere Integrated Containers Engine currently only supports ext4 file systems for volumes.

After you create a volume by using docker volume create , you can mount that volume in a container by running either
of the following commands:

docker -H virtual_container_host_address:2376 --tls
create -v volume_name:/folder busybox

docker -H virtual_container_host_address:2376 --tls
run -v volume_name:/folder busybox

In the examples above, Docker mounts the volume volume_name to /folder in the container.

NOTE: When using a vSphere Integrated Containers Engine VCH as your Docker endpoint, the storage driver is
always the vSphere Integrated Containers Engine Backend Engine. If you specify the docker volume create --driver
option an error stating that a bad driver has been selected will occur.

Creating Volumes from Images
Some images, for example, mongo or redis:alpine , contain volume bind information in their metadata. vSphere
Integrated Containers Engine creates such volumes with the default parameters and treats them as anonymous
volumes. vSphere Integrated Containers Engine treats all volume mount paths as unique, in the same way that
Docker does. This should be kept in mind if you attempt to bind other volumes to the same location as anonymous or
image volumes. A specified volume always takes priority over an anonymous volume.

If you require an image volume with a different volume capacity to the default, create a named volume with the
required capacity. You can mount that named volume to the location that the image metadata specifies. You can find
the location by running docker inspect image_name and consulting the Volumes section of the output. The resulting
container has the required storage capacity and the endpoint.

Create a Container with a New Anonymous or Named
Volume

46

If you intend to create named or anonymous volumes by using docker create -v when creating containers, a volume
store named default must exist in the VCH.

NOTES:

vSphere Integrated Containers Engine does not support mounting vSphere datastore folders as data volumes. A
command such as docker create -v /folder_name:/folder_name busybox is not supported if the volume store is a
vSphere datastore.
If you use docker create -v to create containers and mount new volumes on them, vSphere Integrated
Containers Engine only supports the -r and -rw options.
Anonymous volumes are only recommended for development rather than production environments. A valid use
case for anonymous volumes is the creation of ephemeral Docker build hosts for a CI pipeline.

Create a Container with a New Anonymous Volume

To create an anonymous volume, you include the path to the destination at which you want to mount the anonymous
volume in the docker create -v command. Docker creates the anonymous volume in the default volume store, if it
exists. The VCH mounts the anonymous volume on the container.

The docker create -v example below performs the following actions:

Creates a busybox container that uses an anonymous volume in the default volume store.
Mounts the volume to /volumes in the container.

docker -H virtual_container_host_address:2376 --tls
create -v /volumes busybox

Create a Container with a Named Volume

To create a container with a new named volume, you specify a volume name in the docker create -v command.
When you create containers that with named volumes, the VCH checks whether the volume exists in the volume
store, and if it does not, creates it. The VCH mounts the existing or new volume on the container.

The docker create -v example below performs the following actions:

Creates a busybox container
Creates volume named volume_1 in the default volume store.
Mounts the volume to the /volumes folder in the container.

docker -H virtual_container_host_address:2376 --tls
create -v volume_1:/volumes busybox

Mount Existing vSphere-Backed Volumes on Containers
If your volume store is in a vSphere datastore, mounting existing volumes on containers is subject to the following
limitations:

47

vSphere Integrated Containers currently supports mounting a volume that is backed by vSphere on only one
container at a time.
Docker does not support unmounting a volume from a container, whether that container is running or not. When
you mount a volume on a container by using docker create -v , that volume remains mounted on the container
until you remove the container. When you have removed the container you can mount the volume onto a new
container.
If you intend to create and mount a volume on one container, remove that container, and then mount the same
volume on another container, use a named volume. It is possible to mount an anonymous volume on one
container, remove that container, and then mount the anonymous volume on another container, but it is not
recommended to do so.

The docker create -v example below performs the following operations:

Creates a container named container1 from the busybox image.
Mounts the named volume volume1 to the myData folder on that container, starts the container, and attaches to
it.
After performing operations in volume1:/myData , stops and removes container1 .
Creates a container named container2 from the Ubuntu image.
Mounts volume1 to the myData folder on container2 .

docker -H virtual_container_host_address:2376 --tls
create --name container1 -v volume1:/myData busybox
docker start container1
docker attach container1

[Perform container operations and detach]

docker stop container1
docker rm container1
docker create -it --name container2 -v volume1:/myData ubuntu
docker start container2
docker attach container2

[Perform container operations with the same volume that was
previously mounted to container1]

Sharing NFS-Backed Volumes Between Containers
If your volume store is in an NFS share point, sharing volumes between containers is not subject to any limitations. In
vSphere Integrated Containers, the local driver is the vSphere Integrated Containers Docker personality.
Consequently, the way to create NFS volumes with vSphere Integrated Containers is slightly different to how you do it
with regular Docker. All that you need to do to create an NFS volume for a container is provide the name of the
appropriate volume store in the docker volume create command.

docker volume create --opt volumestore=nfs_volumestore_name

48

NOTE: vSphere Integrated Containers mounts NFS volumes as root . Consequently, if containers are to run as non-
root users, the volume store must be configured with the correct permissions so that the non-root users can access it.
For information about how to configure NFS volume stores for non-root users, see About NFS Volume Stores and
Permissions in vSphere Integrated Containers for vSphere Administrators.

Obtain Information About a Volume
To get information about a volume, run docker volume inspect and specify the name of the volume.

docker -H virtual_container_host_address:2376 --tls
volume inspect volume_name

Delete a Named Volume from a Volume Store
To delete a volume, run docker volume rm and specify the name of the volume to delete.

docker -H virtual_container_host_address:2376 --tls
volume rm volume_name

Delete a Container and the Anonymous Volumes Attached
to It
To remove a container and anonymous volumes joined to that container, run docker rm -v . If an anonymous volume
is in use by another container, it is not removed.

$ docker rm -v container1

Run a Container and Delete the Anonymous Volumes
Attached to it when it Stops
To run a container that creates anonymous volumes and then removes those volumes at the end of its run, run
 docker run --rm .

$ docker run --rm container1

49

50

Container Networking with vSphere Integrated
Containers Engine
The following sections present examples of how to perform container networking operations when using vSphere
Integrated Containers Engine as your Docker endpoint.

Publish a Container Port
Add Containers to a New Bridge Network
Bridged Containers with an Exposed Port
Deploy Containers on Multiple Bridge Networks
Deploy Containers That Combine Bridge Networks with a Container Network
Deploy a Container with a Static IP Address

To perform certain networking operations on containers, your Docker environment and your virtual container hosts
(VCHs) must be configured in a specific way.

For information about the default Docker networks, see https://docs.docker.com/engine/userguide/networking/.
For information about the networking options with which vSphere administrators can deploy VCHs and examples,
see Virtual Container Host Networks in vSphere Integrated Containers for vSphere Administrators.

NOTE: The default level of trust on VCH container networks is published . As a consequence, if the vSphere
administrator did not configure --container-network-firewall on the VCH, you must specify -p 80 in docker run and
 docker create commands to publish port 80 on a container. Alternatively, the vSphere administrator can configure the
VCH to set --container-network-firewall to a different level.

Publish a Container Port
Connect a container to an external mapped port on the public network of the VCH:

 $ docker run -p 8080:80 --name test1 my_container my_app

Result: You can access Port 80 on test1 from the public network interface on the VCH at port 8080.

Add Containers to a New Bridge Network
Create a new non-default bridge network and set up two containers on the network. Verify that the containers can
locate and communicate with each other:

$ docker network create -d bridge my-bridge-network
$ docker network ls
...
NETWORK ID NAME DRIVER
615d565d498c my-bridge-network bridge
...
$ docker run -d --net=my-bridge-network \
 --name=server my_server_image server_app
$ docker run -it --name=client --net=my-bridge-network busybox

51

https://docs.docker.com/engine/userguide/networking/

/ # ping server
PING server (172.18.0.2): 56 data bytes
64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.073 ms
64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.092 ms
64 bytes from 172.18.0.2: seq=2 ttl=64 time=0.088 ms

Result: The server and client containers can ping each other by name.

Note: Containers created on the default bridge network don't get name resolution by default in the way described
above. This is consistent with docker bridge network behavior.

Bridged Containers with an Exposed Port
Connect two containers on a bridge network and set up one of the containers to publish a port via the VCH. Assume
that server_app binds to port 5000.

$ docker network create -d bridge my-bridge-network
$ docker network ls
...
NETWORK ID NAME DRIVER
615d565d498c my-bridge-network bridge
...
$ docker run -d -p 5000:5000 --net=my-bridge-network \
 --name=server my_server_image server_app
$ docker run -it --name=client --net=my-bridge-network busybox
/ # ping -c 3 server
PING server (172.18.0.2): 56 data bytes
64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.073 ms
64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.092 ms
64 bytes from 172.18.0.2: seq=2 ttl=64 time=0.088 ms
/ # telnet server 5000
GET /

Hello world!Connection closed by foreign host
$ telnet vch_public_interface 5000
Trying 192.168.218.137...
Connected to 192.168.218.137.
Escape character is '^]'.
GET /

Hello world!Connection closed by foreign host.

Result: The server and client containers can ping each other by name. You can connect to server on port 5000
from the client container and to port 5000 on the VCH public network.

Deploy Containers on Multiple Bridge Networks
You can use multiple bridge networks to isolate certain types of application network traffic. An example may be
containers in a data tier communicating on one network and containers on a web tier communicating on another. In
order for this to work, at least one of the containers needs to be on both networks.

52

Docker syntax does not allow for the use of multiple --net arguments for docker run or docker create , so to connect
a container to multiple networks, you need to use:

 docker network connect [network-id] [container-id]

Note: With VIC containers, networks can only be added to a container when it's in its created state. They can't be
added while the container is running.

Create two bridge networks, one for data traffic and one for web traffic

docker network create --internal bridge-db
docker network create bridge-web

Create and run the data container(s)

docker run -d --name db --net bridge-db myrepo/mydatabase

Create and run the web container(s) and make sure one is on both networks. Expose the web front end on port 8080
of the VCH.

docker create -d --name model --net bridge-db myrepo/web-model
docker network connect bridge-web web-model
docker start model
docker run -d -p 8080:80 --name view --net bridge-web myrepo/web-view

Result:

 db and web-view cannot communicate with each other
 web-model can communicate with both db and web-view
 web-view exposes a service on port 8080 of the VCH

Note: A container on multliple bridge networks will not get a distinct network interface for each network, rather it will
get multiple IP addresses on the same interface. Use ip addr to see the IP addresses.

Deploy Containers That Combine Bridge Networks with a
Container Network
A "container" network is a vSphere port group that a container can be connected to directly and which allows the
container to have an external identity on that network. This can be combined with one or more private bridge
networks for intra-container traffic.

NOTE: Multiple bridge networks are backed by the same port group as the default bridge, segregated via IP address
management. Container networks are strongly isolated from all other networks.

A container network is specified when the VCH is installed using vic-machine --container-network [existing-port-group]
and should be visible when you run docker network ls from a Docker client.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE

53

baf6919f5721 ExternalNetwork external
fc41d9a86514 bridge bridge

The three main advantages of using a container network over exposing a port on the VCH are that:

1) The container can get its own external IP address. 2) The container is not dependent on the VCH control plane
being up for network connectivity. This allows the VCH to be powered down or upgraded with zero impact on the
network connectivity of the deployed container. 3) This avoids the use of NAT, which will benefit throughput
performance

Let's take the above example with the web and data tiers and show how it could be achieved using a container
network.

Create one private bridge network for data traffic

docker network create --internal bridge-db

Create and run the data container(s)

docker run -d --name db --net bridge-db myrepo/mydatabase

Create and run the web container(s) and make sure one is on both networks. In this example, we only want the web-
view container to have an identity on the ExternalNetwork, so the web-model container is only in the data network.

docker run -d --name model --net bridge-db myrepo/web-model
docker create -d -p 80 --name view --net bridge-db myrepo/web-view
docker network connect ExternalNetwork view
docker start view

Result:

All the containers can communicate with each other.
 db and web-model cannot communicate externally
 web-view has its own external IP address and its service is available on port 80 of that IP address

Note: Given that a container network manifests as a vNIC on the container VM, it has its own distinct network
interface in the container.

Deploy a Container with a Static IP Address
Deploy a container that has a static IP address on the container network. For you to be able to deploy containers with
static IP addresses, the vSphere administrator must have specified the --container-network-ip-range option when they
deployed the VCH. The IP address that you specify in docker network connect --ip must be within the specified range.
If you do not specify --ip , the VCH assigns an IP address from the range that the vSphere administrator specified in
 --container-network-ip-range .

$ docker network connect --ip ip_address container-net container1

54

Result: The container container1 runs with the specified IP address on the container-net network.

55

Creating Containerized Applications with vSphere
Integrated Containers Engine
The topics in this section provides guidelines for container developers who want to use vSphere Integrated
Containers Engine to develop and deploy a containerized application.

vSphere Integrated Containers is designed to help you get the best out of your vSphere infrastucture by adding a
container consumption model to it. That means that you can consume vSphere networks, storage and compute in a
way that's familiar, autonomous, scriptable, opinionated and portable. There are significant benefits to this approach
and also limits to what you can do.

This section will help you to understand the considerations, benefits and limits to putting containers into production
with vSphere Integrated Containers Engine. It includes plenty of examples of common deployment scenarios,
including using Docker Compose.

How to get the best out of vSphere Integrated Containers when putting containerized applications into production
Example of deploying a single container VM into production with vSphere Integrated Containers engine

Example of deploying multiple container VMs into production using Docker Compose

56

https://docs.docker.com/compose/

Putting Applications into Production with vSphere
Integrated Containers Engine
vSphere Integrated Containers engine is designed to be a docker API compatible production endpoint for
containerized workloads. As such, the design focus is on provisioning containerized applications with optimal
isolation, security, data persistence, throughput performance and to take advantage of vSphere capabilities.

vSphere Integrated Containers engine is designed to make existing features of vSphere easy to consume and exploit
by providing compatibilty with the Docker image format and Docker client. Inevitably that means that there are some
differences between a regular Docker host and a virtual container host (VCH), and between a Linux container and a
container VM. Some of those differences are intentional design constraints, such as there being no such thing as a
"privileged" container in vSphere Integrated Containers. Some are because of a lack of functional completeness,
while others are outside of the existing scope of the product, such as native support for docker build .

There are other sections that discuss these topics in more depth, but this section is intented to help you to understand
how to maximize business value by understanding how the capabilities of the product map to production
requirements.

Building Images for production
While official images on sites like Docker Hub are useful for showing how an application might be containerized,
these images are rarely suitable to put into production as is. Exploring how to customize images is outside of the
scope of this document, but important considerations include:

Anonymous volumes

You can specify a volume in a container image using the VOLUME keyword. However, this does not allow you to
specify any characteristics about the volumes and is only recommended for development rather than production
environments. A VCH can have mutliple volume stores and a volume is a disk, so being able to specify an
appropriate volume store and the size of the disk is an important consideration.

Note also that a volume in vSphere Integrated Containers will have a /lost+found folder in it due to the ext4
filesystem and if your application needs an empty folder, you should specify a sub directory in the volume. Eg.

 docker run -v mydisk:/mountpoint -e DATA_DIR=/mountpoint/data myimage

Exposing network ports

You can expose network ports in a Dockerfile using EXPOSE and leave it up to the container engine to define port
mappings using docker run -P . There are a few considerations with this.

If you want to expose your container to other containers on a bridge network, you don't need to use EXPOSE. Your
container will be resolvable by name.

57

If you want your container to be externally accessible, vSphere Integrated Containers Engine gives you the option to
use an external container network rather than port mapping. This is more robust and more performant because it
doesn't depend on the container engine being available for a network connection and it doesn't rely on NAT
networking. Your container gets its own IP address on that container network. Exposing your container on a container
network cannot be specified in a Dockerfile.

If you want to use a port mapping on the VCH endpoint VM, it's rarely the case that you want the container engine to
pick a random port and again, that's not something that can be specified in the Dockerfile. Better to use docker run -p
<external>:<internal> at deployment.

Environment variables

Environment variables are a very useful way of setting both static and dynamic configuration. Use of Environment
variables in a Dockerfile should be considered static configuration as they will be the same on every deployment.
Setting them on the command-line allows for dynamic configuration and over-riding of static settings.

Ephemeral and Persistent State
The question of where a container stores its state is an important one. A container has an ephemeral filesystem and
multiple optional persistent volume mounts. Any writes to any part of the filesystem that is not a mounted volume is
stored only until the container is deleted.

When a regular Linux container is deployed into a VM, there are typically two types of filesystem in the guest OS. An
overlay filesystem manages the image data and stores ephemeral state. A volume will typically be another part of the
guest filesystem mounted into the container. As such it is also possible for Linux containers to have shared read/write
access to the same filesystem on the container host. This is useful in development, but potentially problematic in
production as it forces containers to be tied to each other and to a specific container host. That may well be by design
in the case where multiple containers form a single service and a single unit of scale. What's important however is to
consider the scope, persistence and isolation of data when deploying containerized applications.

Take a database container as an example. Its data almost certainly needs to be backed up, live beyond the lifecycle
of the container and not be mixed up with any other kind of data. The problem of peristing such state onto a container
host filesystem is that it's mixed in with other state and cannot easily be backed up, unless the host itself has a disk
mounted specifically for that purpose. There are volume drivers that can be used with Docker Engine for this purpose.
Eg. VMware Docker Volume Service

When you deploy a container to a VCH, ephemeral state is written to a delta disk (an ephemeral layer on top of the
image layers) and volumes are independently mounted disks which can only be mounted to one container at a time.
When creating a volume, you can specify the size of the disk and the volume store it gets deployed to. If you select a
volume store backed by a shared datastore, that volume will be available to any container anywhere in the vSphere
cluster. This is particularly useful when it comes to the live migration of stateful containers. The vSphere administrator
will be responsible for backup policy associated with the datastore.

As such, vSphere Integrated Containers makes it easy to store persistent data to disks that are independent of VMs,
can be written to shared datastores and can participate in the same backup and security policies as regular VMs.

58

https://vmware.github.io/vsphere-storage-for-docker/

Note that an anonymous volume declared in a Dockerfile will manifest as a mounted disk of a default size (1GB) to a
default datastore. This is almost always going to be the wrong option in production for the reasons stated above.

You can use NFS to mount shared read-write volumes to container VMs.

Container Isolation
A container deployed to a VCH is strongly isolated by design. Strongly isolated means:

The container gets its own Linux kernel which is not used for any other purpose
The container gets its own filesystem and buffer cache which is not used for any other purpose
The container cannot get access to the container control plane or get information about any other containers
Privilege escalation or container breakouts in the conventional sense are not possible
The container operates independent of its control plane (assuming port mapping is not being used)
The container can take advantage of vSphere High Availability and vMotion

Network isolation is handled in a similar way to Docker, except that containers can be connected directly to vSphere
port groups (see container networks). Storage isolation is discussed above.

This kind of strong isolation is best suited to a container workload that is a long-running service. If the service fails, it
should have no impact on any other services. Examples of a long-running service are a database, web server, key-
value store etc.

Containers are very flexible abstractions however and not every container is designed to be a single service. In fact,
some containers are designed to be combined to form a single service and a single unit of scale. This notion is
sometimes described as a Pod. In such a circumstance, it may be beneficial to run these as Linux containers in a
single VM. vSphere Integrated Containers Engine provides built-in support for this model of provisioning Linux
container hosts as vSphere Integrated Containers container VMs since 1.2.

What's important is to consider the policy needs of your application in terms of isolation. Strong isolation is a very
important consideration in deploying robust applications into production and vSphere Integrated Containers makes it
easy to turn that policy into plumbing.

59

Building and Deploying Single Containers to a Virtual
Container Host
This section assumes that you already have a virtual container host (VCH) installed and that you are accessing it
using TLS authentication.

For simplicity, pre-built Docker images are demonstrated to illustrate principles of operation. It is assumed that in
reality you will have your own Docker images built.

This section will illustrate a number of useful capabilities such as pre-poluating data volumes, creating custom images
and running daemon processes.

Deploying a Database - Postgres 9.6

All databases will have common requirements. A database should almost always be strongly isolated and long-
running, so is a perfect candidate for a container VM. Steps to consider include:

1. Choose a volume store for your database state
2. Choose a size for your persistent volume
3. Choose a network for your container. Does it need to be exposed externally or privately to other containers?
4. How many CPUs and how much memory do you want for your database?

Note that the Dockerfile uses VOLUME and EXPOSE to illustrate that it needs to store persistent state and that you
should be able to reach it on a particular port. As discussed here, anonymous volumes and random port mappings
are fine for a sandbox, but not for production.

In this example, we create a 10GB volume disk on a backed up shared datastore. We'll use a private network to
access the database, assuming that another container will need to access it privately. We use environment variables
to set the data directory and password. We give the container a name so that it can be resolved using that name on
the private network. Finally, we choose 2 vCPUs and 4GB of RAM.

docker network create datanet
docker volume create --opt Capacity=10G --opt VolumeStore=shared-backedup pgdata
docker run --name db -d -v pgdata:/var/lib/postgresql/data -e POSTGRES_PASSWORD=y7u8i9o0p --cpus 2 -m 4g --net datanet po
stgres:9.6

Once the container has started, you can use docker ps to make sure it's running. You can use docker logs db to see
the logs. You can use docker exec -it db /bin/bash to get a shell into the container.

Now let's check that it's visible on the private network and it's running correctly. We can do this using a VIC container
running on the same private network:

docker run --rm -it --net datanet postgres:9.6 /bin/bash
 $ ping db
 PING db (172.18.0.2): 56 data bytes
 64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.856 ms
 ...
 $ pg_isready -h db
 db:5432 - accepting connections

60

https://github.com/docker-library/postgres/blob/972294a377463156c8d61297320c872fc7d370a9/9.6/Dockerfile

If we stop and delete the container, the data volume will persist. It will even persist beyond the lifespan of the VCH
unless vic-machine delete --force is used.

Deploying an Application Server - Tomcat 9 with JRE 8

Looking at the Dockerfile here, there are no anonymous volumes specified. However, we need to consider how to get
our application deployed and we may want to set some JVM configuration.

Let's start by deploying Tomcat on an external container network to make sure it works

docker run --name web -d -p 8080 -e JAVA_OPTS="-Dkey=value" --net ExternalNetwork tomcat:9
docker logs web
docker inspect web | grep IPAddress
curl <external-ip>:8080

Hopefully an index.html showing Tomcat server running is shown. Of course you can also test this using a browser.
Note that you can pass JRE options in as an environment variable as per the example above.

Note also that a container VM already has an instance of the haveged service running to provide sufficient entropy for
faster startup (see https://wiki.apache.org/tomcat/HowTo/FasterStartUp).

Next step is to consider how to get a webapp onto the application server. There are static and dynamic approaches to
this problem.

Pre-populate a Volume

You can use a container to pre-populate a volume with a web application that you then bind when you run the
application server. This is a late-binding dynamic approach that has the advantage that the container image remains
general-purpose. The downside is that it requires an extra step to populate the volume.

docker volume create webapp
docker run --rm -v webapp:/data -w /data tomcat:9 curl -O https://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/sample.w
ar
docker run --name web -d -p 8080 -v webapp:/usr/local/tomcat/webapps --net ExternalNetwork tomcat:9
curl <external-ip>:8080/sample/index.html

The volume is a disk of default size, in this case 1GB. The command to populate the volume mounts it at /data and
then tells the container to use /data as the working directory. It then uses the fact that the Tomcat container has
 curl installed to download a sample web app as a WAR file to the volume. When the volume is mounted to
 /usr/local/tomcat/webapps , it replaces any existing webapps such as the welcome page and Tomcat runs just the
sample app.

If you don't want the volume to completely replace the existing /webapps directory, you can modify the above example
to extract the WAR file to the volume and then mount the volume as a subdirectory of webapps.

docker volume create webapp
docker run --rm -v webapp:/data -w /data tomcat:9 /bin/bash -c "curl -O https://tomcat.apache.org/tomcat-6.0-doc/appdev/s
ample/sample.war; unzip sample.war; rm sample.war"
docker run --name web -d -p 8080 -v webapp:/usr/local/tomcat/webapps/sample --net ExternalNetwork tomcat:9
curl <external-ip>:8080/sample/index.html

61

https://github.com/docker-library/tomcat/blob/1cb69781deeac97b2bb138054de3b2f35e9b49a0/9.0/jre8/Dockerfile
https://linux.die.net/man/8/haveged
https://wiki.apache.org/tomcat/HowTo/FasterStartUp

Note that running multiple commands on a container can be done using /bin/bash -c . There's a discussion below as
to why this isn't necessarily ideal for a running service, but for chaining simple commands together, it works fine.
Now, not only is your sample app available, but any other app baked into the image in /usr/local/tomcat/webapps is
also available.

Build a custom image

Building a custom image allows you to copy the sample webapp into the container image filesystem and make some
other improvements and upgrades while you're there. This then creates a single purpose container that runs the
webapp(s) baked into it.

Note that vSphere Integrated Containers Engine does not have a native docker build capability. Containers should be
built using Docker Engine and vSphere Integrated Containers Engine relies on the portability of the Docker image
format to run them. In order to do this, the built image needs to be pushed to a registry that the VCH can access. This
is one reason why such a registry is built into the vSphere Integrated Containers product.

Dockerfile:

FROM tomcat:9

ENV JAVA_OPTS "-Dkey=value"
COPY sample.war /usr/local/bin/webapps

In a VM running standard Docker Engine:

docker build -t <registry-address>/<project>/<image name> .
docker login <registry-address>
docker push <registry-address>/<project>/<image name>

From a Docker client attached to a VCH

docker run --name web -d -p 8080 --net ExternalNetwork <registry-address>/<project>/<image name>

Running Daemon Processes in a VIC container

Although a VIC container is a VM, it is a very opinionated VM in that it has the same constraints as a container. It
doesn't have a conventional init system and its lifecycle is coupled to a single main process. There are a few ways of
running daemon processes in a container - many of which are far from ideal.

For example, simply chaining commands in a Dockerfile CMD instruction techically works, but it compromises the
signal handling and exit codes of the container. As a result, docker stop will almost certainly not work as intended.
Let's imagine we want to run the sshd daemon in the background to grant users shell access into our web server,
rather than giving them broader docker exec privileges.

FROM tomcat:9

RUN apt-get update;apt-get install -y openssh-server
COPY sample.war /usr/local/bin/webapps
CMD /usr/sbin/sshd && catalina.sh run

62

So this is not a recommended approach. Try running docker stop and it will timeout and eventually kill the container.
This is not a problem exclusive to vSphere Integrated Containers Engine, this is a general problem with container
images.

A much simpler approach is to run sshd using docker exec once the container is started:

docker run --name web -d -p 8080 -v webapp:/usr/local/tomcat/webapps --net ExternalNetwork <registry-address>/<image name
>
docker exec -d web /usr/sbin/sshd

Docker exec with the -d option runs a process as a daemon in the container. While this is arguably the neatest
solution to the problem, it does require a subsequent call to the container after it's started. While it's relatively simple
to script this, it doesn't work well in a scenario such as a Compose file.

So a third approach is to create a script that the container starts when it initializes that uses a trap handler to manage
signals.

rc.local

#!/bin/bash

cleanup()
{
 kill $(pidof /docker-java-home/jre/bin/java)
}

trap cleanup EXIT

/usr/sbin/sshd
catalina.sh run

Dockerfile

FROM tomcat:9

RUN apt-get update;apt-get install -y openssh-server
COPY sample.war /usr/local/bin/webapps
CMD ["/etc/rc.local"]
COPY rc.local /etc/

Deploying a Development Environment

You can use VIC to run a development environment that can be used either interactively or as a means of running
builds or test suites.

Let's look at some simple examples. Regardless of the approach, we'll need code mounted into the development
environment. The simplest way to achieve this is using a volume. Let's download the VIC repository onto a volume.

docker volume create vic-build
docker run --rm -v vic-build:/build -w /build golang:1.8 git clone https://github.com/vmware/vic.git

Interactive

63

The source code tree lives on the persistent volume and can be re-used across invocations of the development
environment. The command below will take you straight into a golang development environment shell.

docker run --rm -it -v vic-build:/go/src/github.com/vmware/ -w /go/src/github.com/vmware/vic golang:1.8

Running a Build

Let's build VIC using the volume created above. That's a simple matter of appropriately sizing the container VM and
running make .

docker run --rm -m 4g -v vic-build:/go/src/github.com/vmware/ -w /go/src/github.com/vmware/vic golang:1.8 make all

The output of the build also lives on the volume. You need to ensure that the volume is big enough. vSphere
Integrated Containers Engine supports NFS volume mounts which could be a great alternative for the build source
and output.

64

Building and Deploying Multi-Container Applications
to a Virtual Container Host
Having examined some of the considerations around deploying single containers to a virtual container host (VCH),
this section examples how to deploy applications that are comprised of multiple containers.

There are two approaches you can take to this. The most instinctive approach would be to create scripts that manage
the lifecycle of volumes, networks and containers.

The second approach is to use a manifest-based orchestrator such as Docker Compose. Docker Compose is a
proprietary orchestrator that drives the Docker API and ties other pieces of the Docker ecosystem together including
Build and Swarm. Given that vSphere Integrated Containers Engine doesn't currently support either Build or Swarm,
Compose compatibility is necessarily limited. However, Compose can still be a useful tool, provided those limitations
are understood.

Scripting Multi-Container Applications
Let's start by looking at how you would script Wordpress running in one container and a MySQL database in another.
We can then use some of the considerations and topics discussed and apply that to the Compose example later.

As with the single container examples, we need to consider:

1. What persistent state needs to be stored and where should it go?
2. How should the containers communicate with each other?
3. Does each container need to be strongly isolated?
4. How should each container be sized?

For this example, we're going to create two named volumes on different vSphere datastores. Database state is going
to a persistent volume on a shared datastore that's backed up and encrypted. The Wordpress HTML state is going to
a shared datastore that's less expensive.

We're going to create a private network for the database and expose the Wordpress container on a second network
that exposes a port on the VCH endpoint.

The Wordpress application server and the database container don't necessarily have to be separate failure domains,
but one of the advantages of vSphere Integrated Containers Engine is that it makes it easy to deploy them that more
secure way, so that's the approach we're taking here.

The question of sizing is a simple matter of setting virtual CPUs and memory on each container.

If we were to create a shell script to stand this up, it might look like this:

#!/bin/bash

DB_PASSWORD=wordpress
DB_USER=wordpress

WEB_CTR_NAME=web

65

DB_CTR_NAME=db

pull the images first
docker pull wordpress
docker pull mysql:5.7

create a persistent volume for the database
docker volume create --opt Capacity=4G --opt VolumeStore=backed-up-encrypted db-data
docker volume create --opt Capacity=2G --opt VolumeStore=default html-data

create a private network for the web container to talk to the database. This will fail if the network already exists.
docker network create --internal db-net
docker network create web-net

start the database container - specify a subdirectory on the volume as the data dir
docker run -d --name $DB_CTR_NAME --net db-net -v db-data:/var/lib/mysql --cpus 1 -m 2g -e MYSQL_ROOT_PASSWORD=somewordpr
ess -e MYSQL_DATABASE=$DB_PASSWORD -e MYSQL_USER=$DB_USER -e MYSQL_PASSWORD=wordpress mysql:5.7

start the web container - note it resolves the database container by name over db-net
docker create --name $WEB_CTR_NAME --net web-net -p 8080:80 -v html-data:/var/www/html --cpus 2 -m 4g -e WORDPRESS_DB_HOS
T=$DB_CTR_NAME:3306 -e WORDPRESS_DB_USER=$DB_USER -e WORDPRESS_DB_PASSWORD=$DB_PASSWORD wordpress

docker network connect db-net $WEB_CTR_NAME

docker start $WEB_CTR_NAME

check that the containers are up and look at the IP address and port of the web container
docker ps | grep "$WEB_CTR_NAME\|$DB_CTR_NAME"

A second script to shut down the two containers and clean up everything might look like this:

#!/bin/bash

docker stop web db
docker rm web db

uncomment to delete volume state
docker volume rm db-data html-data

uncomment to delete networks
docker network rm db-net web-net

Blocking on Container Readiness

In the above example, the Wordpress container waits for about 10 seconds for the database to come up and be
ready. What if it needs to wait longer than that? This is one of the ways docker exec can be useful. For example:

wait until the database is up
while true; do
 docker exec -it db mysqladmin --user=$DB_USER --password=$DB_PASSWORD version > /dev/null 2>&1
 if [$? -eq 0]; then
 break
 fi
 sleep 5
done

It's worth noting that the MySQL docker hub page states:

66

https://hub.docker.com/_/mysql/

If there is no database initialized when the container starts, then a default database will be created.
While this is the expected behavior, this means that it will not accept incoming connections until such initialization co
mpletes.
This may cause issues when using automation tools, such as docker-compose, which start several containers simultaneously.

The user of docker exec is the quickest and simplest mechanism you can use to execute a binary in a running
container and test its return code. A cleaner solution might be to add your own custom script to the database image
that blocks until the database is ready and then call that using docker exec . This eliminates the need to call docker
exec in a sleep loop.

If you want to modify the Wordpress image to add a database connection test, you would have to create a script that
the container will evoke that runs the test before running the main process and deals correctly with signal handling.
See here for a discussion on ways to achieve this.

Running Multi-Container Applications Using Docker
Compose
Before we get into the topic of building applications for Docker Compose, let's look at an example of how we would
run the equivalent of the above script using Docker Compose and vSphere Integrated Containers engine.

Docker Compose serializes a manifest in a YML file which the docker-compose binary turns into docker commands.
The equivalent of the above script as a Compose file would be the following:

version: '2'

services:
 db:
 image: mysql:5.7
 command: --datadir=/var/lib/mysql/data
 volumes:
 - db-data:/var/lib/mysql
 networks:
 - db-net
 environment:
 MYSQL_ROOT_PASSWORD: somewordpress
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 ports:
 - "8080:80"
 volumes:
 - html-data:/var/www/html
 networks:
 - web-net
 - db-net
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress

67

https://docs.docker.com/compose/startup-order/

 WORDPRESS_DB_PASSWORD: wordpress

volumes:
 db-data:
 driver: "vsphere"
 driver_opts:
 Capacity: "4G"
 VolumeStore: "backed-up-encrypted"
 html-data:
 driver: "vsphere"
 driver_opts:
 Capacity: "2G"
 VolumeStore: "default"

networks:
 web-net:
 db-net:
 internal: true

Note that there is no way to run exec commands explicitly in a compose file, so any waits for dependent services to
come up need to be built into the containers themselves.

How to Manage the Application Lifecycle with docker-
compose and vSphere Integrated Containers Engine
Assuming you've downloaded an appropriate version of the docker-compose binary, you need to point docker-
compose at a VCH endpoint. This is done either by setting DOCKER_HOST=<endpoint-ip>:<port> or using docker-compose -H
<endpoint-ip>:<port> .

Dependencies between the compose file and vic-machine configuration

Given that the VCH lifecycle is handled by a vSphere administrator, there may be some named resources in the VCH
that need to be referenced in the Compose file. For example, in the Compose file above are the names of two volume
stores. There may other assumptions, such as the name of a container network for example. As a user, it's important
to know how to get this information from your VCH so that you can configure your Compose file appropriately.

To view a list of networks that have been pre-configured by the vSphere admin, use docker network ls and look for
ones marked external .

To view a list of volume stores that have been pre-configured by the vSphere admin, use docker info | grep
VolumeStores .

TLS Authentication

Assuming you're using TLS authentication to the Docker endpoint, that is either done using environment variables or
command-line options.

With environment variables, it's assumed that you've already set DOCKER_TLS_VERIFY=1 and DOCKER_CERT_PATH=<path to
client certs> . This is required in order to use the Docker client. For docker-compose you have to additionally set
 COMPOSE_TLS_VERSION=TLSv1_2 . You can then run docker-compose up -d to start the application (assuming you've also set
 DOCKER_HOST to point to the VCH endpoint).

68

Using command-line arguments with Docker client is a little more clumsy as each key has to be specified
independently and the same is true of docker-compose . Regardless, the only way to specify the TLS version is through
the environment variable above COMPOSE_TLS_VERSION=TLSv1_2 . You can then run docker-compose -H <endpoint-ip>:2376 --
tlsverify --tlscacert="<local-ca-path>/ca.pem" --tlscert="<local-ca-path>/cert.pem" --tlskey="<local-ca-path>/key.pem" compose
up -d

Lifecycle Commands

The docker-compose binary is well documented and it is outside of the scope of this document to go into detail on
that. However, given the example given above, the following lifecycle commands work:

docker-compose pull # pull the required images
docker-compose up -d # start the application in the background
docker-compose logs # see the logs of the containers started
docker-compose images # list the images in use
docker-compose stop # cleanly stop the running containers, leave container state
docker-compose kill # force kill of the container processes
docker-compose start # restart the application
docker-compose down # stop the application and remove the resources, leaving persistent volumes and im
ages
docker-compose down --volumes --rmi # stop the application and remove all resources including volumes and images

Building Multi-Container Applications Using Docker
Compose
Given that vSphere Integrated Containers Engine does not have a native build capability, it does not interpret the
 build keyword in a compose file and docker-compose build will not work when DOCKER_HOST points to a VIC endpoint.
vSphere Integrated Containers Engine relies upon the portability of the docker image format and it is expected that a
regular Docker Engine will be used in a CI pipeline to build container images for test and deployment.

There are two ways to work around this. You can create separate Compose files for build and run, or you can use the
same Compose file but just make sure to add a couple of arguments. We will explore both options here using another
example of a Compose file that includes build instructions. In this case, the sample voting application found here.

Let's start by cloning the repository: git clone git@github.com:dockersamples/example-voting-app.git and we'll start by
looking at docker-compose-simple.yml .

Using separate Compose files

You can strip a Compose file down to an absolute minimum if you want to use it just for building and pushing images.
If you want to run the application on a VIC endpoint, you'll need to also push the built images to a docker registry
visible to your VCH, so that they can be deployed. In order to do that, we need to add image directives to the
Compose file.

$ more docker-compose-simple-build.yml
version: "2"

services:
 vote:
 build: ./vote
 image: <registry-address>/<project>/vote:0.1

69

https://github.com/dockersamples/example-voting-app/blob/master/docker-compose-simple.yml

 worker:
 build: ./worker
 image: <registry-address>/<project>/worker:0.1

 result:
 build: ./result
 image: <registry-address>/<project>/result:0.1

$ sudo docker-compose -f docker-compose-simple-build.yml build
$ sudo docker login <registry>
$ sudo docker-compose -f docker-compose-simple-build.yml push

Now that the application is built and pushed, you need to create a second Compose file for deployment that reflects
the deployment considerations discussed earlier in terms of isolation, peristent volume state, networking etc. The
Compose file provided in the repo is simply an example and you would typically expect to have to change it to suit
your needs. Let's do that, but keep it as simple as possible to begin with.

Modifications from the original file are highlighted as comments

version: "2" # vSphere Integrated Containers Engine supports Compose file version 2

services:
 vote:
 image: <registry-address>/<project>/vote:0.1 # Fully-qualified image name
 command: python app.py
 ports: # Local ./vote volume mount removed - use the app.py built-in
 - "5000:80"

 redis:
 image: redis:alpine
 ports: ["6379"]

 worker:
 image: <registry-address>/<project>/worker:0.1 # Fully-qualified image name

 db:
 image: postgres:9.4

 result:
 image: <registry-address>/<project>/result:0.1 # Fully-qualified image name
 command: nodemon --debug server.js
 ports: # Local ./results volume mount removed - use the server.js built-in
 - "5001:80"
 - "5858:5858"

Let's review the changes that were made to this Compose file.

Fully qualified image name

In most real-world scenarios, container images will be pushed to a registry before they're deployed into production.
That means that the registry and a project will be part of the image name. The only way it will run with just the
container name is if it has been built locally.

Removed local volume mappings

70

Local volume mounts are useful for development and testing as they allow source trees and data to be easily mapped
into a container. In production however, making a container host stateful for the purpose of seeding the container with
configuration or application data is only feasible if the container is guaranteed to be deployed to the stateful host. In
general, best practice is to keep a container host as stateless as possible.

vSphere Integrated Containers Engine cannot map volumes from a local filesystem into a container because vSphere
Integrated Containers Engine containers are strongly isolated and don't share a common filesystem. Despite this, it is
still possible in VIC to add state to a container by pre-populating a volume with data and mounting it (TBD: link to
"Pre-populate a Volume").

Combining into a single Compose file

If separate Compose files feels clunky, it's quite possible to build, push and run from the same Compose file. All we
need to do is to merge them together and then make sure we tell docker-compose what we want. Here's an example
of a merged file:

version: "2"

services:
 vote:
 build: ./vote
 image: <registry-address>/<project>/vote:0.1
 command: python app.py
 ports:
 - "5000:80"

 redis:
 image: redis:alpine
 ports: ["6379"]

 worker:
 build: ./worker
 image: <registry-address>/<project>/worker:0.1

 db:
 image: postgres:9.4

 result:
 build: ./result
 image: <registry-address>/<project>/result:0.1
 command: nodemon --debug server.js
 ports:
 - "5001:80"
 - "5858:5858"

Build and push work in just the same way as the previous example. The rest of the directives are ignored.

In order to deploy this to a VIC endpoint however, you need to first explicitly pull the images. Otherwise docker-
compose will try to build them, even if you attempt to run with --no-build . Then you run the Compose file with --no-
build to tell docker-compose to ignore the build directives.

$ sudo docker-compose -f docker-compose-simple-vic.yml build
$ sudo docker-compose -f docker-compose-simple-vic.yml push
$ docker-compose -f docker-compose-simple-vic.yml pull
$ docker-compose -f docker-compose-simple-vic.yml up --no-build -d

71

In the example above, the use of sudo creates a child shell that runs a local Docker Engine and bypasses the
environment variables configured to make docker-compose talk to a VIC endpoint. In this way, it's possible to do a
build, push, pull and run from the same shell using the same client.

A Summary on Compatibility
Given that VIC is designed to be an enterprise runtime and has unique isolation characteristics applied to the
containers it deploys, a Docker Compose script downloaded from the web may not work without modification.

This is partly a question of functional completeness of vSphere Integrated Containers Engine docker API support and
partly a question of its inherent design. There are some highly detailed technical sections in the documentation
highlighting all of the capabilities vSphere Integrated Containers Engine currently supports, but here is a high-level
summary of topics discussed in more detail above:

vSphere Integrated Containers Engine supports version 2 of the Compose File format.
vSphere Integrated Containers Engine has no native build support.
VIC containers take time to boot and thus may exhibit timing related issues. Eg. You may need to set
 COMPOSE_HTTP_TIMEOUT to a higher value than the default.
VIC containers have no notion of local read-write shared storage.

One of the main reasons this section takes you through all the considerations of putting a multi-container application
into production with the Docker client prior to introducing Docker Compose is to help you understand how to configure
Compose to work with the capabilities of VIC. Trying to work the opposite way around, by trying to configure VIC to
work with capabilities of Compose may be trickier for the reasons stated.

72

	Application Development
	Supported Docker Commands
	Supported Docker Compose File Options
	Supported Dockerfile Instructions

	Obtain a VCH
	Configure the Docker Client
	Use and Limitations
	Building and Pushing Images
	Deploy a Test dch-photon
	Advanced Use of dch-photon

	Using Volumes
	Container Networking
	Creating a Containerized App
	Putting Apps into Production
	Deploy a Single Container VM
	Deploy Container VMs with Compose

