

1.1

1.1.1

1.1.1.1

1.1.1.2

1.1.1.2.1

1.1.1.2.2

1.1.1.2.3

1.1.2

1.1.2.1

1.1.2.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.6.1

1.1.6.2

1.1.6.3

1.1.6.4

1.1.7

1.1.8

1.1.9

1.1.9.1

1.1.9.2

1.1.9.3

Table of Contents
Develop Container Apps

Manage a Development Project

Create New Networks for Provisioning Containers

Provisioning Container VMs in the Management Portal

Configuring Links for Templates and Images

Configuring Health Checks for Templates and Images

Configuring Cluster Size and Scale

Supported Docker Commands

Supported Docker Compose File Options

Supported Dockerfile Instructions

Use and Limitations

Obtain a VCH

Configure the Docker Client

Building and Pushing Images

Add Certificate to Custom Image

Manually Add Certificate

Build, Push, and Pull and Image

Advanced dch-photon Deployment

Using Volumes

Container Networking

Creating a Containerized App

Putting Apps into Production

Deploy a Single Container VM

Deploy Container VMs with Compose

2

Develop Container Applications with vSphere Integrated
Containers
Develop Container Applications with vSphere Integrated Containers provides information about how to use VMware vSphere®
Integrated Containers™ as the endpoint for Docker container application development.

Product version: 1.2

This documentation applies to all 1.2.x releases.

Intended Audience
This information is intended for container application developers whose Docker environment uses vSphere Integrated Containers.
Knowledge of container technology and Docker is assumed.

Copyright © 2016, 2017 VMware, Inc. All rights reserved. Copyright and trademark information. Any feedback you provide to VMware
is subject to the terms at www.vmware.com/community_terms.html.

VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304

www.vmware.com

3

https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://docs.docker.com/
http://pubs.vmware.com/copyright-trademark.html
http://www.vmware.com/community_terms.html
http://www.vmware.com

Manage a Development Project in vSphere Integrated
Containers Management Portal
As a DevOps administrator, you can perform the following tasks in vSphere Integrated Containers Management Portal:

Add developers and viewers projects and assign other DevOps administrators. For more information, see Add Viewers,
Developers, or DevOps Administrators to Projects.
Change project configurations, such as making the project registry public, changing deployment security settings, and enabling
vulnerability scanning. For more information, see Manage Projects.
Create applications, provision containers, add networks and volumes to virtual container hosts. For more information, see
Create New Networks for Provisioning Containers and Provisioning Container VMs in the Management Portal.
View repositories and virtual container hosts.

4

Create New Networks for Provisioning Containers
You can create, modify, and attach network configurations to containers and container templates.

Procedure

1. In the management portal, navigate to Home > Networks and click + Network.
2. On the Create Network page, select the Advanced check box to access all available settings.
3. Configure the new network settings and click Create.

Setting Description

Name Enter a name for the network.

IPAM
config

Enter subnet, IP range, and gateway values that are unique to this network configuration. They must not overlap
with any other networks on the same container host.

Custom
Properties

(Optional) Specify custom properties for the new network configuration. containers.ipam.driver - for use with
containers only. Specifies the IPAM driver to be used when adding a network component. The supported values
depend on the drivers that are installed in the container host environment in which they are used. For example,
a supported value might be infoblox or calico depending on the IPAM plug-ins that are installed on the
container host. This property name and value are case-sensitive. The property value is not validated when you
add it. If the specified driver does not exist on the container host at provisioning time, an error message is
returned and provisioning fails. containers.network.driver - for use with containers only. Specifies the network
driver to be used when adding a network component. The supported values depend on the drivers that are
installed in the container host environment in which they are used. By default, Docker-supplied network drivers
include bridge, overlay, and macvlan, while VCH-supplied network drivers include the bridge driver. Third-party
network drivers such as weave and calico might also be available, depending on what networking plug-ins are
installed on the container host. This property name and value are case-sensitive. The property value is not
validated when you add it. If the specified driver does not exist on the container host at provisioning time, an
error message is returned and provisioning fails.

Hosts Select the hosts to use the new network.

Result

New network is created and you can provision containers on it.

5

Provisioning Container VMs in the Management Portal
You can provision container VMs from the management portal. You can quick-provision containers by using default settings or you
can customize your deployment by using the available settings. You can either provision or save as a template your configured
container.

You can provision containers, templates, or images.

To provision a single container, go to Home > Containers and click + Container.
To provision an image with additional settings, go to Home > Templates and import a new template from file that you can later
provision.

When you create containers from the Containers page in the management portal, you can configure the following settings:

Basic configuration
Image to be used
Name of the container
Custom commands
Links

Network configuration
Port bindings and ports publishing
Hostname
Network mode

Storage configuration
Select volumes
Configure a working directory

Policy configuration
Define clusters
Resource allocation
Anti-affinity rules

Custom environment variables
Health checks

HTTP
TCP connection
Command

Logging

When you configure a container, on the Environment tab, you can add industry standard variables. For information about using
Docker environment variables, see Environment variables in Compose in the Docker documentation.

Related topics

Configuring Links
Configuring Health Checks
Configuring Cluster Size and Scale

6

https://docs.docker.com/compose/environment-variables/

Configuring Links
You configure links to templates or images. You can use links to enable communication between multiple services in your
application. Links in vSphere Integrated Containers are similar to Docker links, but connect containers across hosts. A link consists
of two parts: a service name and an alias. The service name is the name of the service or template being called. The alias is the
hostname that you use to communicate with that service.

For example, if you have an application that contains a Web and database service and you define a link in the Web service to the
database service by using an alias of my-db , the Web service application opens a TCP connection to my-db:PORT_OF_DB. The
PORT_OF_DB is the port that the database listens to, regardless of the public port that is assigned to the host by the container
settings. If MySQL is checking for updates on its default 3306 port, and the published port for the container host is 32799, the Web
application accesses the database at my-db:3306.

You can use networks instead of links. Links are a legacy Docker feature with significant limitations when linking container clusters,
including:

Docker does not support multiple links with the same alias.
You cannot update the links of a container runtime. When scaling up or down a linked cluster, the dependent container’s links
will not be updated.

7

Configuring Health Checks
You can configure a health check method to update the status of a container based on custom criteria. vSphere Integrated
Containers uses an own implementation of health checks and not the standard Docker implementation.

You can use HTTP or TCP protocols when executing a command on the container. You can also specify a health check method. The
available health configuration modes are described below.

Mode Description

None Default. No health checks are configured.

HTTP

If you select HTTP, you must provide an API to access and an HTTP method and version to use. The API is
relative and you do not need to enter the address of the container. You can also specify a timeout period for the
operation and set health thresholds. For example, a healthy threshold of 2 means that two consecutive
successful calls must occur for the container to be considered healthy and in the RUNNING status. An
unhealthy threshold of 2 means that two unsuccessful calls must occur for the container to be considered
unhealthy and in the ERROR status. For all the states in between the healthy and unhealthy thresholds, the
container status is DEGRADED.

TCP
connection

If you select TCP connection, you must only enter a port for the container. The health check attempts to
establish a TCP connection with the container on the provided port. You can also specify a timeout value for
the operation and set healthy or unhealthy thresholds as with HTTP.

Command If you select Command, you must enter a command to be run on the container. The success of the health
check is determined by the exit status of the command.

You can also enable a health check as part of the provisioning process for a container. By default, health checks are not performed
during provisioning. Deselect the Ignore health check on provision check box to require at least one successful health check
before a container can be considered successfully provisioned.

When a container returns an ERROR status, you can configure an automated redeploy for that container by selecting the
Autoredeploy check box.

8

Configuring Cluster Size and Scale
You can create container clusters by using Containers placement settings to specify cluster size.

When you configure a cluster, a specified number of containers is provisioned. Requests are load balanced among all containers in
the cluster. You can modify the cluster size on a provisioned container or application to increase or decrease the size of the cluster
by one. When you modify the cluster size at runtime, all affinity filters and placement rules are considered.

9

Supported Docker Commands
vSphere Integrated Containers Engine 1.2 supports Docker client 1.13.0. The supported version of the Docker API is 1.25.

Docker Management Commands
Image Commands
Container Commands
Hub and Registry Commands
Network and Connectivity Commands
Shared Data Volume Commands
Docker Compose Commands
Swarm Commands

Docker Management Commands

Command Docker
Reference Supported

 dockerd
Launch the
Docker
daemon

Not applicable. This construct does not exist in vSphere Integrated Containers

 info
Docker
system
information

Yes, since 1.0. Provides Docker-specific data, basic capacity information, lists configured
volume stores, and virtual container host information. Does not reveal vSphere datastore paths
that might contain sensitive vSphere information.

 inspect
Inspect a
container
or image

Yes, since 1.0. Includes information about the container network.

 version
Docker
version
information

Yes, since 1.0

Image Commands

Command Docker Reference Supported

 build Build an image from a Dockerfile No

 commit Create a new image from a container’s changes Yes, since 1.2. You can only run docker commit on
stopped containers.

 history Show the history of an image No

 images Images Yes, since 1.0. Supports --filter , --no-trunc , and --
quiet

 import
Import the contents from a tarball to create a
filesystem image No

 load Load an image from a tar archive or STDIN No

 rmi Remove a Docker image Yes, since 1.0

 save Save images No

 tag Tag an image into a repository Yes, since 1.0

10

https://docs.docker.com/engine/reference/commandline/dockerd/
https://docs.docker.com/engine/reference/commandline/info/
https://docs.docker.com/engine/reference/commandline/inspect/
https://docs.docker.com/engine/reference/commandline/version/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/history/
https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/import/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/tag/

Container Commands

Command Docker
Reference Supported

 attach
Attach to a
container Yes, since 1.0

 container
list

List
Containers Yes, since 1.0

 container
resize

Resize a
container Yes, since 1.0

 cp

Copy files
or folders
between a
container
and the
local
filesystem

Yes, since 1.2. You cannot copy to or from an NFS volume. You cannot copy from an unstarted
container.

 create
Create a
container

Yes, since 1.0.
 --cpuset-cpus in Docker specifies CPUs the container is allowed to use during execution (0-3,
0,1). In vSphere Integrated Containers Engine, this parameter specifies the number of virtual
CPUs to allocate to the container VM. Minimum CPU count is 1, maximum is unlimited. Default
is 2.
 --ip allows you to set a static IP on the container. By default, the virtual container host
manages the container IP.
Minimum value for --memory is 512MB, maximum unlimited. If unspecified, the default is 2GB.
Supports the --attach , --cidfile , --cpuset-cpus , --entrypoint , --env , --env-file , --help , --
interactive , --ip , --link , --memory , --name , --net , --net-alias , --publish , --rm , --stop-
signal , --stop-timeout , --tty , --user , --volume , and --workdir options.

 diff

Inspect
changes
on a
container's
filesystem

Yes, since 1.2

 events

Get real
time
events
from the
server

Yes, since 1.0. Supports passive Docker events for containers and images. Does not yet
support events for volumes or networks.

 exec

Run a
command
in a
running
container

Yes, since 1.2

 export
Export a
container No

 kill
Kill a
running
container

Yes, since 1.0. Docker must wait for the container to shut down.

 logs
Get
container
logs

Yes, since 1.0. Supports --since and --timestamps since 1.2.

 pause

Pause
processes
in a
container

No

11

https://docs.docker.com/engine/reference/commandline/attach/
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.22/#list-containers
https://docs.docker.com/engine/reference/api/docker_remote_api_v1.23/#resize-a-container-tty
https://docs.docker.com/engine/reference/commandline/cp/
https://docs.docker.com/engine/reference/commandline/create/
https://docs.docker.com/engine/reference/commandline/diff/
https://docs.docker.com/engine/reference/commandline/events/
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/export/
https://docs.docker.com/engine/reference/commandline/kill/
https://docs.docker.com/engine/reference/commandline/logs/
https://docs.docker.com/engine/reference/commandline/pause/

 port
Obtain port
data

Yes, since 1.0. Displays port mapping data.
Supports mapping a random host port to the container when the host port is not specified.

 ps
Show
running
containers

Yes, since 1.0. Supports the -a/--all , -f/--filter , --no-trunc , and -q/--quiet options.
Filtering by network name is supported, but filtering by network ID is not supported.

 rename
Rename a
container

Yes, since 1.1. Name resolution for renamed running containers is not supported, but if you
restart the container the new name is resolved.

 restart
Restart a
container Yes, since 1.0

 rm
Remove a
container

Yes, since 1.0. Removes associated anonymous and regular volumes. Supports the --force
option and the name parameter. Does not support docker rm -v . To view volumes attached to a
container that is removed, use docker volume ls and docker volume inspect <id> . If you
continually invoke docker create to make more anonymous volumes, those volumes are left
behind after each subsequent removal of that container.

 run

Run a
command
in a new
container

Yes, since 1.0. Supports mapping a random host port to the container when the host port is not
specified.
Supports running images from private and custom registries.
 docker run --net=host is not supported. You can specify a container network by using the --
container-network option when you deploy a virtual container host. Supports the --attach , --
cidfile , --cpuset-cpus , --detach , --detach-keys , --entrypoint , --env , --env-file , --help , --
interactive , --ip , --link , --memory , --name , --net , --net-alias , --publish , --rm , --stop-
signal , --stop-timeout , --tty , --user , --volume , and --workdir options.

 start
Start a
container Yes, since 1.0. Supports the --attach and --interactive options.

 stats

Get
container
stats
based on
resource
usage

Yes. Provides statistics about CPU and memory usage since 1.1. Provides statistics about
network or disk usage since 1.2.

 stop
Stop a
container Yes, since 1.0. Attempts to politely stop the container. If that fails, powers down the VM.

 top

Display the
running
processes
of a
container

No

 unpause

Unpause
processes
within a
container

No

 update
Update a
container No

 wait
Wait for a
container Yes, since 1.0

Hub and Registry Commands

Command Docker Reference Supported

 login Log into a registry Yes, since 1.0

 logout Log out from a registry Yes, since 1.0

12

https://docs.docker.com/engine/reference/commandline/port/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/rename/
https://docs.docker.com/engine/reference/commandline/restart/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/start/
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stop/
https://docs.docker.com/engine/reference/commandline/top/
https://docs.docker.com/engine/reference/commandline/unpause/
https://docs.docker.com/engine/reference/commandline/update/
https://docs.docker.com/engine/reference/commandline/wait/

 pull
Pull an image or repository from a
registry

Yes, since 1.0. Supports pulling from secure or insecure public and
private registries.

 push
Push an image or a repository to a
registry No

 search Search the Docker hub for images No

Network and Connectivity Commands
For more information about network operations with vSphere Integrated Containers Engine, see Container Networking with vSphere
Integrated Containers Engine.

Command Docker
Reference Supported

 network
connect

Connect to
a network

Yes, since 1.0. Not supported for running containers.

You can specify the --ip option to assign a static IP address to a container. If you do not
specify --ip , the VCH assigns an IP address from the provided range of addresses for the
container network. Using the --ip option on container networks with DHCP enabled is not
supported.

 network
create

Create a
network

Yes, since 1.1. See the use case to connect a container to an external network in Container
Networking with vSphere Integrated Containers Engine. Bridge is also supported.

 network
disconnect

Disconnect
a network No

 network
inspect

Inspect a
network Yes, since 1.0

 network
ls

List
networks/ Yes, since 1.0

 network
rm

Remove a
network Yes, since 1.0. Network name and network ID are supported.

Shared Data Volume Commands
For more information about volume operations with vSphere Integrated Containers Engine, see Using Volumes with vSphere
Integrated Containers Engine.

Command Docker
Reference Supported

 volume
create

Create a
volume

Yes, since 1.0. Supports the --opt Capacity and --opt VolumeStore options, and ignores any
other options that you might specify. Currently only supports ext4 file systems for volume
stores.

 volume
inspect

Information
about a
volume

Yes, since 1.0

 volume ls
List
volumes Yes, since 1.0

 volume rm
Remove or
delete a
volume

Yes, since 1.0

13

https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/logout/
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/push/
https://docs.docker.com/engine/reference/commandline/search/
https://docs.docker.com/engine/reference/commandline/network_connect/
https://docs.docker.com/engine/reference/commandline/network_create/
https://docs.docker.com/engine/reference/commandline/network_disconnect/
https://docs.docker.com/engine/reference/commandline/network_inspect/
https://docs.docker.com/engine/reference/commandline/network_ls/
https://docs.docker.com/engine/reference/commandline/network_rm/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_inspect/
https://docs.docker.com/engine/reference/commandline/volume_ls/
https://docs.docker.com/engine/reference/commandline/volume_rm/

Docker Compose Commands
vSphere Integrated Containers Engine 1.2 supports Docker Compose version 1.9.0.

For more information about using Docker Compose with vSphere Integrated Containers Engine, see Creating a Containerized
Application with vSphere Integrated Containers Engine.

For information about Docker Compose file support, see Supported Docker Compose File Options.

Command Docker Reference Supported

 build Build or rebuild service No. Depends on docker build .

 bundle
Generate a Distributed Application
Bundle (DAB) from the Compose file Yes, since 1.1

 config Validate and view the compose file Yes, since 1.0

 create Create services Yes, since 1.0

 down
Stop and remove containers,
networks, images, and volumes Yes, since 1.0

 events
Receive real time events from
containers

Yes, since 1.0. Supports passive Docker events for containers and
images. Does not yet support events for volumes or networks.

 exec Run commands in services No. Depends on docker exec .

 help Get help on a command Yes, since 1.0

 kill Kill containers No, but docker kill works.

 logs View output from containers Yes, since 1.0

 pause Pause services No. Depends on docker pause .

 port Print the public port for a port binding Yes, since 1.0

 ps List containers Yes, since 1.0

 pull Pulls service images Yes, since 1.0

 push Pushes images for service No. Depends on docker push

 restart Restart services Yes, since 1.0

 rm Remove stopped containers Yes, since 1.0

 run Run a one-off command Yes, since 1.0

 scale
Set number of containers for a
service Yes, since 1.0

 start Start services Yes, since 1.0

 stop Stop services Yes, since 1.0

 unpause Unpause services No. Depends on docker unpause .

 up Create and start containers Yes, since 1.1

 version
Show Docker Compose version
information Yes, since 1.0

Swarm Commands

14

https://docs.docker.com/compose/reference/build/
https://docs.docker.com/compose/reference/bundle/
https://docs.docker.com/compose/reference/config/
https://docs.docker.com/compose/reference/create/
https://docs.docker.com/compose/reference/down/
https://docs.docker.com/compose/reference/events/
https://docs.docker.com/compose/reference/exec/
https://docs.docker.com/compose/reference/help/
https://docs.docker.com/compose/reference/kill/
https://docs.docker.com/compose/reference/logs/
https://docs.docker.com/compose/reference/pause/
https://docs.docker.com/compose/reference/port/
https://docs.docker.com/compose/reference/ps/
https://docs.docker.com/compose/reference/pull/
https://docs.docker.com/compose/reference/push/
https://docs.docker.com/compose/reference/restart/
https://docs.docker.com/compose/reference/rm/
https://docs.docker.com/compose/reference/run/
https://docs.docker.com/compose/reference/scale/
https://docs.docker.com/compose/reference/start/
https://docs.docker.com/compose/reference/stop/
https://docs.docker.com/compose/reference/unpause/

This version of vSphere Integrated Containers Engine does not directly support Docker Swarm. However, you can use the dch-
photon Docker Engine to instantiate a Docker swarm for use with vSphere Integrated Containers.

15

Supported Docker Compose File Options
vSphere Integrated Containers Engine 1.2 supports Docker Compose file version 2 and 2.1.

This topic provides information about the Docker Compose file options that vSphere Integrated Containers Engine 1.2 supports.

Service Configuration Options
Volume Configuration Options
Network Configuration Options

Service Configuration Options

Option Compose File Reference Supported

 build Options applied at build time No

 cap_add , cap_drop Add or drop container capabilities No. Depends on docker run --cap-add and docker
run --cap-drop

 command Override the default command Yes

 cgroup_parent
Specify an optional parent cgroup for
the container. No; need docker run --cgrop_parent

 container_name Specify a custom container name Yes

 devices List of device mappings No. Depends on docker create --device .

 depends_on
Express dependency between
services Yes

 dns Custom DNS servers Yes

 dns_search Custom DNS search domains No. Depends on docker run --dns-search .

 tmpfs
Mount a temporary file system inside
the container No. Depends on docker run --tmpfs .

 entrypoint Override the default entry point No. Depends on docker run --entrypoint .

 env_file Add environment variables from a file Yes

 environment Add environment variables Yes

 expose
Expose ports without publishing them
to the host machine No. Depends on docker run --expose .

 extends Extend another service Yes

 external_links
Link to containers started outside this
YML Yes

 extra_hosts Add hostname mappings No. Depends on docker run --add-host .

 group_add
Specify additional groups for the user
inside the container Yes

 healthcheck Check container health No. Depends on docker run --health-cmd .

 image Specify container image Yes

 isolation Specify isolation technology No. Depends on docker run --isolation .

Add metadata by using labels Yes

16

https://docs.docker.com/compose/compose-file/compose-file-v2/
https://docs.docker.com/compose/compose-file/compose-file-v2/#build
https://docs.docker.com/compose/compose-file/compose-file-v2/#capadd-capdrop
https://docs.docker.com/compose/compose-file/compose-file-v2/#command
https://docs.docker.com/compose/compose-file/compose-file-v2/#cgroupparent
https://docs.docker.com/compose/compose-file/compose-file-v2/#containername
https://docs.docker.com/compose/compose-file/compose-file-v2/#devices
https://docs.docker.com/compose/compose-file/compose-file-v2/#dependson
https://docs.docker.com/compose/compose-file/compose-file-v2/#dns
https://docs.docker.com/compose/compose-file/compose-file-v2/#dnssearch
https://docs.docker.com/compose/compose-file/compose-file-v2/#tmpfs
https://docs.docker.com/compose/compose-file/compose-file-v2/#entrypoint
https://docs.docker.com/compose/compose-file/compose-file-v2/#envfile
https://docs.docker.com/compose/compose-file/compose-file-v2/#environment
https://docs.docker.com/compose/compose-file/compose-file-v2/#expose
https://docs.docker.com/compose/compose-file/compose-file-v2/#extends
https://docs.docker.com/compose/compose-file/compose-file-v2/#externallinks
https://docs.docker.com/compose/compose-file/compose-file-v2/#extrahosts
https://docs.docker.com/compose/compose-file/compose-file-v2/#groupadd
https://docs.docker.com/compose/compose-file/compose-file-v2/#healthcheck
https://docs.docker.com/compose/compose-file/compose-file-v2/#image
https://docs.docker.com/compose/compose-file/compose-file-v2/#isolation

 links Link to containers in another service Yes

 logging , log_driver ,
 log_opt

Logging configuration No. Depends on docker run --log-driver and --log-
opt .

 net Network mode (version 1) Yes

 network_mode Network mode (version 2) Yes

 networks Networks to join Yes

 aliases Aliases for this service on the network Yes

 ipv4_address , ipv6_address Static IP address for containers Yes for IPv4. IPv6 is not supported.

 link_local_ips List of link-local IPs No. Depends on docker run --link-local-ip

 pid Sets PID mode No. Depends on docker run --pid .

 ports Expose ports Yes

 security-opt
Override the default labeling scheme
for containers

No. This option only applies to Windows containers,
which are not supported.

 stop-signal
Sets an alternative signal to stop the
container. Yes

 stop-grace-period
Specify how long to wait stopping a
container No

 sysctls
Kernel parameters to set in the
container No

 ulimits
Override the default ulimits for a
container No

 userns_mode Disables the user namespace No

 volumes , volume_driver Mount paths or named volumes Yes

 volumes_from
Mount volumes from another service
or container No

The following Docker run options are supported if their docker run counterpart is supported: security_opt , stop_grace_period ,
 stop_signal , sysctls , ulimits , userns_mode , cpu_shares , cpu_quota , cpuset , domainname , hostname , ipc , mac_address , mem_limit ,
 memswap_limit , oom_score_adj , privileged , read_only , restart , shm_size , stdin_open , tty , user , working_dir .

Volume Configuration Options

Option Compose File Reference Supported

 driver Specify driver to use for this volume Yes

 driver_opts Specify options to pass to the driver for this volume Yes

 labels Add metadata to containers Yes

 external Specify that volume has been created outside of Compose Yes

Network Configuration Options

Option Compose File Reference Supported

 driver Specify driver to use for this network Yes
17

https://docs.docker.com/compose/compose-file/compose-file-v2/#labels
https://docs.docker.com/compose/compose-file/compose-file-v2/#links
https://docs.docker.com/compose/compose-file/compose-file-v2/#logging
https://docs.docker.com/compose/compose-file/compose-file-v1/#net
https://docs.docker.com/compose/compose-file/compose-file-v2/#networkmode
https://docs.docker.com/compose/compose-file/compose-file-v2/#networks
https://docs.docker.com/compose/compose-file/compose-file-v2/#aliases
https://docs.docker.com/compose/compose-file/compose-file-v2/#ipv4address-ipv6address
https://docs.docker.com/compose/compose-file/compose-file-v2/#linklocalips
https://docs.docker.com/compose/compose-file/compose-file-v2/#pid
https://docs.docker.com/compose/compose-file/compose-file-v2/#ports
https://docs.docker.com/compose/compose-file/compose-file-v2/#securityopt
https://docs.docker.com/compose/compose-file/compose-file-v2/#stopsignal
https://docs.docker.com/compose/compose-file/compose-file-v2/#stopgraceperiod
https://docs.docker.com/compose/compose-file/compose-file-v2/#sysctls
https://docs.docker.com/compose/compose-file/compose-file-v2/#ulimits
https://docs.docker.com/compose/compose-file/compose-file-v2/#usernsmode
https://docs.docker.com/compose/compose-file/compose-file-v2/#volumes-volumedriver
https://docs.docker.com/compose/compose-file/compose-file-v2/#volumesfrom
https://docs.docker.com/compose/compose-file/compose-file-v2/#cpushares-cpuquota-cpuset-domainname-hostname-ipc-macaddress-memlimit-memswaplimit-memswappiness-oomscoreadj-privileged-readonly-restart-shmsize-stdinopen-tty-user-workingdir
https://docs.docker.com/compose/compose-file/compose-file-v2/#driver
https://docs.docker.com/compose/compose-file/compose-file-v2/#driveropts
https://docs.docker.com/compose/compose-file/compose-file-v2/#labels-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#external

 driver Specify driver to use for this network Yes

 driver_opts Specify options to pass to the driver for this network No

 enable_ipv6 Enables IPv6 No. IPv6 is not supported.

 ipam Specify custom IPAM configuration Yes

 internal Create an externally isolated overlay network Yes

 labels Add metadata to containers Yes

 external Specify that network has been created outside of Compose Yes

18

https://docs.docker.com/compose/compose-file/compose-file-v2/#driver-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#driveropts-1
https://docs.docker.com/compose/compose-file/compose-file-v2/#enableipv6
https://docs.docker.com/compose/compose-file/compose-file-v2/#ipam
https://docs.docker.com/compose/compose-file/compose-file-v2/#internal
https://docs.docker.com/compose/compose-file/compose-file-v2/#labels-2
https://docs.docker.com/compose/compose-file/compose-file-v2/#external-1

Supported Dockerfile Instructions
Some Dockerfile instructions are directives to the build process and a subset of them are directives to the container engine when a
container is run. The latter is an important consideration when it comes to putting a Docker image into production.

For more information on Dockerfile instructions, see the Dockerfile reference here.

This topic provides information about which of the runtime Dockerfile instructions that vSphere Integrated Containers Engine 1.2
supports.

Option Dockerfile Reference Supported

 LABEL Add metadata to an image Yes

 EXPOSE Expose a port Not yet supported. Port mappings need to be explicitly declared with
 docker run -p

 ENV Set an environment variable Yes

 ENTRYPOINT
Set the executable to be run on
start Yes

 CMD
Set commands to be run on
start Yes

 USER
Set the user that runs the main
process Yes

 WORKDIR Set the working directory Yes

 STOPSIGNAL
Set a stop signal for the
container

Not yet supported. A stop signal can be explicitly declared with docker
run --stop-signal

 HEALTHCHECK Set a health check process No health check options supported yet.

 SHELL Set a default shell Yes

19

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/reference/builder/#expose
https://docs.docker.com/engine/reference/builder/#env
https://docs.docker.com/engine/reference/builder/#entrypoint
https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/reference/builder/#stopsignal
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#shell

Use and Limitations of vSphere Integrated Containers Engine
vSphere Integrated Containers Engine currently includes the following capabilities and limitations:

Supported Docker Features
This version of vSphere Integrated Containers Engine supports these features:

 docker-compose

Pulling images from Docker hub and private registries
Named data volumes
Anonymous data volumes
Sharing concurrent NFS share points between containers
Bridged networks
External networks
Port mapping
Network links/aliases

Unsupported Docker Features
This version of vSphere Integrated Containers Engine does not support these features:

Pulling images via image digest
Mapping a local host folder to a container volume
Mapping a local host file to a container
 docker push

 docker build

For limitations of using vSphere Integrated Containers with volumes, see Using Volumes with vSphere Integrated Containers
Engine.

Limitations of vSphere Integrated Containers Engine
vSphere Integrated Containers Engine includes these limitations:

If you do not configure a PATH environment variable, or if you create a container from an image that does not supply a PATH ,
vSphere Integrated Containers Engine provides a default PATH .
You can resolve the symbolic names of a container from within another container, except in the following cases:

Aliases
IPv6
Service discovery

Containers can acquire DHCP addresses only if they are on a network that has DHCP.

Using docker-compose with TLS
vSphere Integrated Containers supports TLS v1.2, so you must configure docker-compose to use TLS 1.2. However, docker-compose
does not allow you to specify the TLS version on the command line. You must use environment variables to set the TLS version for
 docker-compose . For more information, see docker-compose issue 4651. Furthermore, docker-compose has a limitation that requires you

20

https://github.com/docker/compose/issues/4651

to set TLS options either by using command line options or by using environment variables. You cannot use a mixture of both
command line options and environment variables.

To use docker-compose with vSphere Integrated Containers and TLS, set the following environment variables:

COMPOSE_TLS_VERSION=TLSv1_2
DOCKER_TLS_VERIFY=1
DOCKER_CERT_PATH="path to your certificate files"

The certificate file path must lead to CA.pem , key.pem , and cert.pem . You can run docker-compose with the following command:

docker-compose -H vch_address up

21

Obtain a Virtual Container Host
vSphere Integrated Containers Engine does not currently provide an automated means of obtaining virtual container hosts (VCHs).

When the vSphere administrator uses vic-machine create to deploy a VCH, the VCH endpoint VM obtains an IP address. The IP
address can either be static or be obtained from DHCP. As a container developer, you require the IP address of the VCH endpoint
VM when you run Docker commands.

You can see the addresses of the VCHs that are associated with your project by logging in to vSphere Integrated Containers
Management Portal and selecting Home > Infrastructure > Container Hosts.

If the vSphere administrator deploys VCHs with TLS authentication, vic-machine create generates a file named vch_name.env . The
 env file contains Docker environment variables that are specific to the VCH. You can use the contents of the env file to set
environment variables in your Docker client. Similarly, if the vSphere administrator deployed the VCH with TLS authentication of
clients, you must obtain the client certificates. The vSphere administrator or an automated provisioning service for VCHs could
potentially provide the env file to you when you request a VCH. For more information about setting environment variables and client
certificates for VCHs in your Docker client, see Configure the Docker Client for Use with vSphere Integrated Containers.

22

Configure the Docker Client for Use with vSphere Integrated
Containers
If your container development environment uses vSphere Integrated Containers, you must run Docker commands with the
appropriate options, and configure your Docker client accordingly.

vSphere Integrated Containers Engine 1.2 supports Docker client 1.13.0. The supported version of the Docker API is 1.25.

Connecting to the VCH
Using Docker Environment Variables
Install the vSphere Integrated Containers Registry Certificate

Obtain the vSphere Integrated Containers Registry CA Certificate
Configure the Docker Client on Linux
Configure the Docker Client on Windows

Using vSphere Integrated Containers Registry with Notary

Connecting to the VCH
How you connect to your virtual container host (VCH) depends on the security options with which the vSphere administrator
deployed the VCH.

If the VCH implements any level of TLS authentication, you connect to the VCH at vch_address:2376 when you run Docker
commands.
If the VCH implements mutual authentication between the Docker client and the VCH by using both client and server certificates,
you must provide a client certificate to the Docker client so that the VCH can verify the client's identity. This configuration is
commonly referred to as tlsverify in documentation about containers and Docker. You must obtain a copy of the client
certificate that was either used or generated when the vSphere administrator deployed the VCH. You can provide the client
certificate to the Docker client in either of the following ways:

By using the --tlsverify , --tlscert , and --tlskey options when you run Docker commands. You must also add --
tlscacert if the server certificate is signed by a custom Certificate Authority (CA). For example:

docker -H vch_address:2376
--tlsverify
--tlscert=path_to_client_cert/cert.pem
--tlskey=path_to_client_key/key.pem
--tlscacert=path/ca.pem
info

By setting Docker environment variables:

DOCKER_CERT_PATH=client_certificate_path/cert.pem
DOCKER_TLS_VERIFY=1

If the VCH uses server certificates but does not authenticate the Docker client, no client certificate is required and any client can
connect to the VCH. This configuration is commonly referred to as no-tlsverify in documentation about containers and Docker.
In this configuration, the VCH has a server certificate and connections are encrypted, requiring you to run Docker commands
with the --tls option. For example:

docker -H vch_address:2376 --tls info

In this case, do not set the DOCKER_TLS_VERIFY environment variable. Setting DOCKER_TLS_VERIFY to 0 or to false has no effect.

23

If TLS is completely disabled on the VCH, you connect to the VCH at vch_address:2375. Any Docker client can connect to the
VCH and communications are not encrypted. As a consequence, you do not need to specify any additional TLS options in
Docker commands or set any environment variables. This configuration is not recommended in production environments. For
example:

docker -H vch_address:2375 info

Using Docker Environment Variables
If the vSphere administrator deploys the VCHs with TLS authentication, vic-machine create generates a file named vch_name.env . The
 env file contains Docker environment variables that are specific to the VCH. You can use the env file to set environment variables
in your Docker client.

The contents of the env files are different depending on the level of authentication with which the VCH was deployed.

Mutual TLS authentication with client and server certificates:

DOCKER_TLS_VERIFY=1
DOCKER_CERT_PATH=client_certificate_path\vch_name
DOCKER_HOST=vch_address:2376

TLS authentication with server certificates without client authentication:

DOCKER_HOST=vch_address:2376

No env file is generated if the VCH does not implement TLS authentication.

For information about how to obtain the env file, see Obtain a VCH. For information about the env files in Docker, see docker-
machine env in the Docker documentation.

Install the vSphere Integrated Containers Registry Certificate
If your development environment uses vSphere Integrated Containers Registry or another private registry server that uses CA server
certificates, you must pass the registry's CA certificate to the Docker client. The vSphere administrator must also have configured the
VCH to access the registry.

For information about how vSphere administrators deploy VCHs so that they can access a private registry, see Connect Virtual
Container Hosts to Registries.

The level of security of the connection between the Docker client and the VCH is independent from the level of security of the
connection between the Docker client and the registry. Connections between the Docker client and the registry can be secure while
connections between the Docker client and the VCH are insecure, and the reverse.

NOTE: VCHs cannot to connect to vSphere Integrated Containers Registry instances as insecure registries. Connections to vSphere
Integrated Containers Registry always require HTTPS and a certificate.

Obtain the vSphere Integrated Containers Registry CA Certificate

To access the vSphere Integrated Containers Registry CA certificate, you must have a user account in vSphere Integrated Containers
Management Portal in that has at least the Cloud administrator role.

1. Log in to vSphere Integrated Containers Mangagement Portal at http://vic_appliance_address and following the Go to the
vSphere Integrated Containers Management Portal link.

2. Go to Administration -> Configuration and click the download link for Registry Root Certificate.

24

Configure the Docker Client on Linux

This example configures a Linux Docker client so that you can log into vSphere Integrated Containers Registry by using its IP
address.

NOTE: The current version of vSphere Integrated Containers uses the registry's IP address as the Subject Alternate Name when
auto-generating certificates for vSphere Integrated Containers Registry. Consequently, when you run docker login , you must use the
IP address of the registry rather than the FQDN.

1. Copy the certificate file to the Linux machine on which you run the Docker client.
2. Switch to sudo user.

$ sudo su

3. Create a subfolder in the Docker certificates folder, using the registry's IP address as the folder name.

$ mkdir -p /etc/docker/certs.d/registry_ip

4. Copy the registry's CA certificate into the folder.

$ cp ca.crt /etc/docker/certs.d/registry_ip/

5. Open a new terminal and attempt to log in to the registry server, specifying the IP address of the registry server.

$ docker login registry_ip

6. If the login fails with a certificate error, restart the Docker daemon.

$ sudo systemctl daemon-reload

$ sudo systemctl restart docker

Configure the Docker Client on Windows

To pass the registry's CA certificate to a Docker client that is running on Windows 10, use the Windows Certificate Import Wizard.

1. Copy the ca.crt file to the Windows 10 machine on which you run the Docker client.
2. Right-click the ca.crt file and select Install Certificate.
3. Follow the prompts of the wizard to install the certificate.
4. Restart the Docker daemon:

Click the up arrow in the task bar to show running tasks.
Right-click the Docker icon and select Settings.
Select Reset and click Restart Docker.

5. Log in to the registry server.

docker login registry_ip

Using vSphere Integrated Containers Registry with Notary
vSphere Integrated Containers Registry provides a Docker Notary server that allows you to implement content trust by signing and
verifying the images in the registry. For information about Docker Notary, see Content trust in Docker in the Docker documentation.

25

https://docs.docker.com/engine/security/trust/content_trust/

To use the Docker Notary server from vSphere Integrated Containers Registry, you must pass the registry's CA certificate to your
Docker client and set up Docker Content Trust. By default, the vSphere Integrated Containers Registry Notary server runs on port
4443 on the vSphere Integrated Containers appliance.

1. If you are using a self-signed certificate, copy the CA root certificate to the Docker certificates folder.

To pass the certificate to the Docker client, follow the procedure in Using vSphere Integrated Containers Registry above.

2. If you are using a self-signed certificate, copy the CA certificate to the Docker TLS service.

$ cp ca.crt ~/.docker/tls/registry_ip:4443/

3. Enable Docker Content Trust by setting environment variables.

export DOCKER_CONTENT_TRUST=1
export DOCKER_CONTENT_TRUST_SERVER=https://registry_ip:4443

4. (Optional) Set an alias for Notary.

By default, the local directory for storing meta files for the Notary client is different from the folder for the Docker client. Set an
alias to make it easier to use the Notary client to manipulate the keys and meta files that Docker Content Trust generates.

alias notary="notary -s https//registry_ip:4443 -d ~/.docker/trust --tlscacert
/etc/docker/certs.d/registry_ip/ca.crt"

5. When you push an image for the first time, define and confirm passphrases for the root key and the repository key for that
image.

The root key is generated at:

/root/.docker/trust/private/root_keys

The repository key is generated at:

/root/.docker/trust/private/tuf_keys/[registry_name]/[image_path]

You can see that the signed image that you pushed is marked with a green tick on the Project Repositories page in the
Management Portal.

26

Building and Pushing Images with the dch-photon Docker
Engine
vSphere Integrated Containers Engine is an enterprise container runtime that you use as a deployment endpoint. As such, it does
not have native docker build or docker push capabilities. The job of building and pushing container images is typically part of a
continuous integration (CI) pipeline which does this by using standard Docker Engine instances.

You use standard Docker Engine to build, tag, and push a container image to a registry.
You pull the image from the registry to a vSphere Integrated Containers virtual container host (VCH) to deploy it.

vSphere Integrated Containers Engine can deploy Docker Engine instances for you, in the form of a container image repository
named dch-photon . This image is pre-loaded in the default-project in vSphere Integrated Containers Registry. The dch-photon
image allows you to deploy a container VM that runs a Docker Engine instance hosted in Photon OS. You can deploy any number of
these Docker Engine instances to perform docker build and docker push operations as part of your CI infrastructure.

Requirements for Using dch-photon
Anonymous dch-photon Volumes

Using dch-photon with vSphere Integrated Containers Registry
Using dch-photon with Other Registries
Instantiating Docker Swarms with dch-photon

Requirements for Using dch-photon
To use dch-photon , your environment must satisfy the following conditions:

Configure your local Docker client to use the vSphere Integrated Containers Registry certificate. For information about how to
obtain the registry certificate and pass it to the Docker client, see Using vSphere Integrated Containers Registry.
You have access to a VCH that the vSphere administrator configured so that it can connect to the registry to pull the dch-photon
image. The VCH must also have a volume store named default . For information about how deploy a VCH for use with dch-
photon , see the Deploy a Virtual Container Host for Use with dch-photon in Install, Deploy, and Maintain the vSphere Integrated
Containers Infrastructure.

Anonymous dch-photon Volumes

Each dch-photon container VM that you run creates an anonymous volume in the default volume store. By default, all of the images
you pull into dch-photon go into this volume. The anonymous volume has a 2 GB limit. If you require more than 2 GB to store images
and container state, you must explicitly specify a volume with a higher limit when you run dch-photon .

The anonymous volumes that dch-photon creates are not deleted when you delete a dch-photon container VM. This is by design, so
that you can persist your image cache and container state beyond the lifespan of an individual dch-photon container VM. When you
delete dch-photon container VMs, you must manually remove the anonymous volume from the volume store if you do not require
them.

Using dch-photon with vSphere Integrated Containers Registry
For dch-photon to be able to authenticate with vSphere Integrated Containers Registry, it needs to have the registry's CA certificate.
The purpose of dch-photon is primarily to build images and push them to registries, so each dch-photon instance must be able to
authenticate with the registry to which it pushes. Even if you use the same Docker client to pull and run the dch-photon image as you
use to push built images back to the registry, the dch-photon container VM still needs to have the appropriate registry certificate so
that it can successfully push images.

27

You can provide the certificate to dch-photon in one of two ways:

Build a custom image that has the certificate embedded in it, as described in Add the Registry Certificate to a Custom Image.
This method is preferable since you only need to perform the operation once.
Manually copy the certificate in to a dch-photon container running in a VCH by using docker cp , as described in Manually Add the
Registry Certificate to a dch-photon VM.

When you have deployed dch-photon with the registry certificate, you can use it to build an image and push that image from dch-
photon to vSphere Integrated Containers Registry. You can then pull the image from the registry into a VCH for deployment. For
information about building, pushing, and pulling an image, see Build, Push, and Pull an Image with dch-photon .

Using dch-photon with TLS Authentication and Other Registries
For information about using dch-photon with TLS authentication and with other registries than vSphere Integrated Containers
Registry, see Advanced dch-photon Deployment.

Instantiating Docker Swarms with dch-photon
You can use the dch-photon Docker Engine to instantiate a Docker swarm. For information about instantiating a Docker swarm, see
Automating Swarm Creation with vSphere Integrated Containers 1.2.

28

https://blogs.vmware.com/cloudnative/2017/10/03/automating-swarm-creation-with-vic-1-2/

Add the Registry Certificate to a Custom Image
The recommended method of passing the vSphere Integrated Containers Registry CA certificate to dch-photon is to create a custom
 dch-photon image that includes the certificate. You can then push the image to the vSphere Integrated Containers Registry and verify
that it works by deploying it to a virtual container host (VCH).

By creating a custom image, you can deploy multiple instances of dch-photon that have the correct registry certificate, without having
to manually copy the certificate into each dch-photon container VM.

Prerequisites

You have a known user ID that has at least the Developer role in the default-project in vSphere Integrated Containers
Management Portal.
You have an instance of Docker Engine running on your local sytem.
You installed the CA certificate for vSphere Integrated Containers Registry in your local Docker client. For information about how
to install the registry certificate in a Docker client, see Install the vSphere Integrated Containers Registry Certificate.
For simplicity, this example uses a VCH that was deployed with the --no-tlsverify option. If your VCH implements TLS
verification of clients, you must import the VCH certificates into your Docker client and adapt the Docker commands accordingly.
For information about how to connect a Docker client to a VCH that uses full TLS authentication, see Connecting to the VCH.

Procedure

1. Log in to vSphere Integrated Containers Registry from your local Docker client.

docker login registry_address

2. Pull the dch-photon image into the image cache in your local Docker client.

docker pull registry_address/default-project/dch-photon:1.13

3. Make a new folder and copy the vSphere Integrated Containers Registry certificate into it.

4. In the new folder, create a Dockerfile with the following format:

FROM registry_address/default-project/dch-photon:1.13

 COPY ca.crt /etc/docker/certs.d/registry_address/ca.crt

5. In the same folder, build the Dockerfile as a new image and give it a meaningful new tag.

docker build -t registry_address/default-project/dch-photon:1.13-cert .

6. Push the new image into vSphere Integrated Containers Registry.

docker push registry_address/default-project/dch-photon:1.13-cert

7. (Optional) Log in to vSphere Integrated Containers Registry from the VCH.

If you use the same Docker client as in the preceding steps it is already authenticated with the registry. In this case, you do not
need to log in again when you run commands against the VCH. If you use a different Docker client to run commands against
the VCH, or you logged out, you must log in to the registry.

29

docker -H vch_address:2376 --tls login registry_address

8. Pull the image from vSphere Integrated Containers Registry into the VCH and run it with the name build-slave .

This example runs dch-photon behind a port mapping, but you can also use a container network.

docker -H vch_address:2376 --tls run --name build-slave -d -p 12375:2375
registry_address/default-project/dch-photon:1.13-cert

Result

You have a custom dch-photon image in your vSphere Integrated Containers Registry that contains the correct certificate so that
it can build, pull, and push images to and from that registry.
You deployed a dch-photon container VM from that image, that is running in your VCH.

What to Do Next

To test the Docker container host, see Build, Push, and Pull an Image with dch-photon .

30

Manually Add the Registry Certificate to a dch-photon Container VM
To manually add the vSphere Integrated Containers CA certificate to dch-photon , you can create a dch-photon container VM, then use
 docker cp to copy the certificate into it.

NOTE: This method requires you to copy the certificate to every dch-photon container VM that you deploy. To avoid having to copy the
certificate every time, the recommended method is to create a custom dch-photon image. For information about creating a custom
image, see Add the Registry Certificate to a Custom Image.

Prerequisites

You have a known user ID that has at least the Developer role in the default-project in vSphere Integrated Containers
Management Portal.
You have an instance of Docker Engine running on your local sytem.
You installed the CA certificate for vSphere Integrated Containers Registry in your local Docker client. For information about how
to install the registry certificate in a Docker client, see Install the vSphere Integrated Containers Registry Certificate.
For simplicity, this example uses a virtual container host (VCH) that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the Docker
commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS authentication, see
Connecting to the VCH in Configure the Docker Client for Use with vSphere Integrated Containers.

Procedure

1. Create a dch-photon container VM named build-slave in a VCH, but do not start it.

The container should be stopped because the Docker Engine instance that it runs must restart so that it can recognize the new
certificate and you have copied it to the container. If you have already deployed dch-photon , use docker stop to stop it.

This example runs dch-photon behind a port mapping.

docker -H vch_address:2376 --tls create --name build-slave -p 12375:2375
registry_address/default-project/dch-photon:1.13-cert

2. Create the required folder structure on your local machine.

Docker Engine stores registry certificates in a folder named etc/docker/certs.d/registry_address .

mkdir -p certs.d/registry_address

3. Copy the certificate into the new folder.

cp path_to_cert/ca.crt certs.d/registry_address

4. Use docker cp to copy the certificate from your local system into the dch-photon container VM that is running in the VCH.

 docker -H vch_address:2376 --tls cp certs.d build-slave:/etc/docker

5. Restart the Docker container host to load the certificate.

docker -H vch_address:2376 --tls start build-slave

Result

31

You have a running Docker container host that you configured to push and pull from vSphere Integrated Containers Registry.

What to Do Next

To test the Docker container host, see Build, Push, and Pull an Image with dch-photon .

32

Build, Push, and Pull an Image with dch-photon
After you have loaded the vSphere Integrated Containers Registry certificate into a dch-photon container VM, test the dch-photon
Docker container host by building an image and pushing it to vSphere Integrated Containers Registry. Then, pull them image into a
VCH to deploy it.

Prerequisites

You performed one of the procedures in either Add the Registry Certificate to a Custom Image or Manually Add the Registry
Certificate to a dch-photon VM to create an instance of the dch-photon container VM that includes the CA certificate of your
vSphere Integrated Containers instance.
For simplicity, this example uses a virtual container host (VCH) that was deployed with the --no-tlsverify option. If your VCH
implements TLS verification of clients, you must import the VCH certificates into your Docker client and adapt the Docker
commands accordingly. For information about how to connect a Docker client to a VCH that uses full TLS authentication, see
Connecting to the VCH in Configure the Docker Client for Use with vSphere Integrated Containers.

Procedure

1. Run docker info to test that the Docker container host running in the dch-photon container VM has started correctly.

By specifying port 12375 you direct the Docker client to the Docker container host that is running in the VCH.

docker -H vch_address:12375 info

2. Test that you can authenticate with the registry.

You should not need to log in if your client is already authenticated with the registry, but the login command is included here for
clarity.

docker -H vch_address:12375 login registry_address

3. Test that you can pull images from the registry.

docker -H vch_address:12375 pull registry_address/default-project/dch-photon:1.13

4. Remove the test image that you just pulled.

docker rmi registry_address/default-project/dch-photon:1.13

5. Create a simple Dockerfile and save it in the current directory.

FROM debian:latest

 RUN apt-get update -y && apt-get install -y fortune-mod fortunes

 ENTRYPOINT ["/usr/games/fortune", "-s"]

6. Build an image from the Dockerfile in the dch-photon Docker container host, and tag it with the path to a project in vSphere
Integrated Containers Registry.

docker -H vch_address:12375 build -t registry_address/default-project/test-container .

33

7. Push the image from the dch-photon Docker container host to the registry.

docker -H vch_address:12375 push registry_address/default-project/test-container

8. Pull the image from the registry into the VCH.

docker -H vch_address:2376 --tls pull registry_address/default-project/test-container

9. Run a container from this image on the VCH.

docker -H vch_address:2376 --tls run registry_address/default-project/test-container

10. List the containers that are running and stopped in the VCH.

docker -H vch_address:2376 --tls ps -a

Result

The container that you ran from an image that you built and pushed to vSphere Integrated Containers Registry in dch-photon
appears in the list of containers that have been run in this VCH.

NOTE: Each dch-photon container VM that you run creates an anonymous volume in the default volume store. This anonymous
volume is not deleted when you delete a dch-photon container VM. When you delete dch-photon container VMs, you must manually
remove the anonymous volume from the volume store.

34

Advanced dch-photon Deployment
You do not need to specify any options when you use docker run to deploy dch-photon container VMs for use with vSphere Integrated
Containers Registry. However, you can optionally specify dch-photon options in the docker run command to run dch-photon with TLS
authentication.

You can also specify dch-photon options to connect dch-photon container VMs to registries other than vSphere Integrated Containers
Registry.

 dch-photon Options
Using dch-photon with TLS Authentication

With Remote Verification
Without Remote Verification
With Automatically Generated Certificates

 dch-photon Options
You can specify the following options when you deploy dch-photon container VMs:

 -insecure-registry : Enable insecure registry communication. Set this option multiple times to create a list of registries to which
 dch-photon applies no security considerations. You cannot use this option when connecting to vSphere Integrated Containers
Registry.
 -local : Do not bind the Docker API to external interfaces. Set this option to prevent the Docker API endpoint from binding to the
external interface. Docker Engine only listens on /var/run/docker.sock .
 -storage : Sets the Docker storage driver that Docker Engine uses. By default, the storage driver is overlay2 , which is the
recommended driver when running Docker Engine as a container VM.
 -tls : Use TLS authentication for all connections. Implied by -tlsverify . This option enables secure communication with no
verification of the remote end. To use custom certificates, copy them into the /certs folder in the dch-photon container.
Certificates are generated automatically in /certs if you do not provide them.

Server certificate: /certs/docker.crt
Key for the server certificate: /certs/docker.key

 -tlsverify : Use TLS and authentication for all connections and verify the remote end. To use custom certificates, copy them into
the /certs folder in the dch-photon container. Certificates are generated automatically in /certs if you do not provide them.

Server certificate: /certs/docker.crt
Key for the server certificate: /certs/docker.key
CA certificate: /certs/ca.crt
CA key: /certs/ca-key.pem
Client certificate: /certs/docker-client.crt
Client key: /certs/docker-client.key

 vic-ip : Set the IP address of the virtual container host for use in automatic certificate generation when running dch-photon
containers behind a port mapping.

Using dch-photon with TLS Authentication
To configure the same certificate-based authentication for a dch-photon as you have for your VCH endpoint, you specify the -tls or
 -tlsverify option when you run the dch-photon the container VM. You then copy the appropriate certificates into the dch-photon
container VM.

With Remote Verification

35

1. Create a dch-photon container without starting it.

This example runs dch-photon behind a port mapping and specifies the -tlsverify option.

docker create -p 12376:2376 --name dch-photon-tlsverify registry_address/default-project/dch-
photon:1.13 -tlsverify

2. Copy the certificates into the dch-photon container.

 docker cp cert_folder/ca.pem dch-photon-tlsverify:/certs/ca.crt

 docker cp cert_folder/server-cert.pem dch-photon-tlsverify:/certs/docker.crt

 docker cp cert_folder/server-key.pem dch-photon-tlsverify:/certs/docker.key

3. Start the dch-photon container.

docker start dch-photon-tlsverify

4. Connect to the dch-photon container.

docker -H vch_adress:12376 --tlsverify info

Without Remote Verification

1. Create a dch-photon container without starting it.

This example runs dch-photon behind a port mapping and specifies the -tls option.

docker create -p 12376:2376 --name dch-photon-tls registry_address/default-project/dch-
photon:1.13 -tls

2. Copy the certificates into the dch-photon container.

 docker cp cert_folder/server-cert.pem dch-photon-tls:/certs/docker.crt

 docker cp cert_folder/server-key.pem dch-photon-tls:/certs/docker.key

3. Start the dch-photon container.

docker start dch-photon-tls

4. Connect to the dch-photon container.

docker -H vch_adress:12376 --tls info

With Automatically Generated Certificates

To generate certificates automatically, specify either -tls or -tlsverify . If the dch-photon container runs behind a port mapping,
specify the address of the VCH in the -vic-ip option. This address is used during certificate generation.

36

docker run -p 12376:2376 --name dinv-build -v mycerts:/certs vmware/dch-photon -tlsverify -vic-ip
vch_adress

You can then use docker cp to copy the automatically generated certificates to your local Docker client.

37

Using Volumes with vSphere Integrated Containers
vSphere Integrated Containers supports the use of container volumes. You can create container volumes either in volume stores on
vSphere datastores or in NFS share points that you designate as volume stores. The vSphere datastore or NFS share point houses
the volume store and containers build volumes in that volume store.

IMPORTANT: To use container volume capabilities with vSphere Integrated Containers, the vSphere administrator must configure
one or more volume stores on the virtual container host (VCH). When the vSphere administrator creates a VCH, they can specify a
vSphere datastore or NFS share point to use to store container volumes. For information about how to create VCHs with volume
stores, see Specify Volume Stores. For information about how to add volume stores to existing VCHs, see Add Volume Stores.

Obtain the List of Available Volume Stores
Obtain the List of Available Volumes
Create a Volume in a Volume Store
Creating Volumes from Images
Create a Container with a New Anonymous or Named Volume
Mount Existing vSphere-Backed Volumes on Containers
Sharing NFS-Backed Volumes Between Containers
Obtain Information About a Volume
Delete a Named Volume from a Volume Store

For simplicity, the examples in this topic assume that the VCHs implement TLS authentication with self-signed server certificates,
with no client verification.

Obtain the List of Available Volume Stores
To obtain the list of volume stores that are available on a VCH, run docker info .

docker -H virtual_container_host_address:2376 --tls info

The list of available volume stores for this VCH appears in the docker info output under VolumeStores .

[...]
Storage Driver: vSphere Integrated Containers Backend Engine
VolumeStores: volume_store_1 volume_store_2 ... volume_store_n
vSphere Integrated Containers Backend Engine: RUNNING
[...]

Obtain the List of Available Volumes
To obtain a list of volumes that are available on a VCH, run docker volume ls .

docker -H virtual_container_host_address:2376 --tls volume ls

DRIVER VOLUME NAME
vsphere volume_1
vsphere volume_2
[...] [...]
vsphere volume_n

38

Create a Volume in a Volume Store
When you use the docker volume create command to create a volume, you can optionally provide a name for the volume by specifying
the --name option. If you do not specify --name , docker volume create assigns a random UUID to the volume.

If the vSphere administrator created the VCH with one or more volume stores, but none of the volume stores are named
 default , you must specify the name of an existing volume store in the --opt VolumeStore option. If you do not specify --opt
VolumeStore , docker volume create searches for a volume store named default , and returns an error if no such volume store
exists.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--name volume_name

If the vSphere administrator created the VCH with a volume store named default , you do not need to specify --opt VolumeStore
in the docker volume create command. If you do not specify a volume store name, the docker volume create command
automatically uses the default volume store if it exists.

docker -H virtual_container_host_address:2376 --tls volume create
--name volume_name

You can optionally set the capacity of a volume by specifying the --opt Capacity option when you run docker volume create . If you
do not specify the --opt Capacity option, the volume is created with the default capacity of 1024MB.

If you do not specify a unit for the capacity, the default unit will be in Megabytes.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--opt Capacity=2048
--name volume_name

To create a volume with a capacity in megabytes, gigabytes, or terabytes, include MB , GB , or TB in the value that you pass to -
-opt Capacity . The unit is case insensitive.

docker -H virtual_container_host_address:2376 --tls volume create
--opt VolumeStore=volume_store_label
--opt Capacity=10GB
--name volume_name

vSphere Integrated Containers Engine currently only supports ext4 file systems for volumes.

After you create a volume by using docker volume create , you can mount that volume in a container by running either of the following
commands:

docker -H virtual_container_host_address:2376 --tls
create -v volume_name:/folder busybox

docker -H virtual_container_host_address:2376 --tls
run -v volume_name:/folder busybox

In the examples above, Docker mounts the volume volume_name to /folder in the container.

39

NOTE: When using a vSphere Integrated Containers Engine VCH as your Docker endpoint, the storage driver is always the vSphere
Integrated Containers Engine Backend Engine. If you specify the docker volume create --driver option an error stating that a bad
driver has been selected will occur.

Creating Volumes from Images
Some images, for example, mongo or redis:alpine , contain volume bind information in their metadata. vSphere Integrated
Containers Engine creates such volumes with the default parameters and treats them as anonymous volumes. vSphere Integrated
Containers Engine treats all volume mount paths as unique, in the same way that Docker does. This should be kept in mind if you
attempt to bind other volumes to the same location as anonymous or image volumes. A specified volume always takes priority over
an anonymous volume.

If you require an image volume with a different volume capacity to the default, create a named volume with the required capacity. You
can mount that named volume to the location that the image metadata specifies. You can find the location by running docker inspect
image_name and consulting the Volumes section of the output. The resulting container has the required storage capacity and the
endpoint.

Create a Container with a New Anonymous or Named Volume
If you intend to create named or anonymous volumes by using docker create -v when creating containers, a volume store named
 default must exist in the VCH.

NOTES:

vSphere Integrated Containers Engine does not support mounting vSphere datastore folders as data volumes. A command
such as docker create -v /folder_name:/folder_name busybox is not supported if the volume store is a vSphere datastore.
If you use docker create -v to create containers and mount new volumes on them, vSphere Integrated Containers Engine only
supports the -r and -rw options.

Create a Container with a New Anonymous Volume

To create an anonymous volume, you include the path to the destination at which you want to mount the anonymous volume in the
 docker create -v command. Docker creates the anonymous volume in the default volume store, if it exists. The VCH mounts the
anonymous volume on the container.

The docker create -v example below performs the following actions:

Creates a busybox container that uses an anonymous volume in the default volume store.
Mounts the volume to /volumes in the container.

docker -H virtual_container_host_address:2376 --tls
create -v /volumes busybox

Create a Container with a Named Volume

To create a container with a new named volume, you specify a volume name in the docker create -v command. When you create
containers that with named volumes, the VCH checks whether the volume exists in the volume store, and if it does not, creates it.
The VCH mounts the existing or new volume on the container.

The docker create -v example below performs the following actions:

Creates a busybox container
Creates volume named volume_1 in the default volume store.
Mounts the volume to the /volumes folder in the container.

40

docker -H virtual_container_host_address:2376 --tls
create -v volume_1:/volumes busybox

Mount Existing vSphere-Backed Volumes on Containers
If your volume store is in a vSphere datastore, mounting existing volumes on containers is subject to the following limitations:

vSphere Integrated Containers currently supports mounting a volume that is backed by vSphere on only one container at a time.
Docker does not support unmounting a volume from a container, whether that container is running or not. When you mount a
volume on a container by using docker create -v , that volume remains mounted on the container until you remove the container.
When you have removed the container you can mount the volume onto a new container.
If you intend to create and mount a volume on one container, remove that container, and then mount the same volume on
another container, use a named volume. It is possible to mount an anonymous volume on one container, remove that container,
and then mount the anonymous volume on another container, but it is not recommended to do so.

The docker create -v example below performs the following operations:

Creates a container named container1 from the busybox image.
Mounts the named volume volume1 to the myData folder on that container, starts the container, and attaches to it.
After performing operations in volume1:/myData , stops and removes container1 .
Creates a container named container2 from the Ubuntu image.
Mounts volume1 to the myData folder on container2 .

docker -H virtual_container_host_address:2376 --tls
create --name container1 -v volume1:/myData busybox
docker start container1
docker attach container1

[Perform container operations and detach]

docker stop container1
docker rm container1
docker create -it --name container2 -v volume1:/myData ubuntu
docker start container2
docker attach container2

[Perform container operations with the same volume that was
previously mounted to container1]

Sharing NFS-Backed Volumes Between Containers
If your volume store is in an NFS share point, sharing volumes between containers is not subject to any limitations. In vSphere
Integrated Containers, the local driver is the vSphere Integrated Containers Docker personality. Consequently, the way to create
NFS volumes with vSphere Integrated Containers is slightly different to how you do it with regular Docker. All that you need to do to
create an NFS volume for a container is provide the name of the appropriate volume store in the docker volume create command.

docker volume create --opt volumestore=nfs_volumestore_name

Obtain Information About a Volume

41

To get information about a volume, run docker volume inspect and specify the name of the volume.

docker -H virtual_container_host_address:2376 --tls
volume inspect volume_name

Delete a Named Volume from a Volume Store
To delete a volume, run docker volume rm and specify the name of the volume to delete.

docker -H virtual_container_host_address:2376 --tls
volume rm volume_name

NOTE: vSphere Integrated Containers does not support running docker rm -v to remove volumes that are associated with a
container.

42

Container Networking with vSphere Integrated Containers
Engine
The following sections present examples of how to perform container networking operations when using vSphere Integrated
Containers Engine as your Docker endpoint.

Publish a Container Port
Add Containers to a New Bridge Network
Bridged Containers with an Exposed Port
Deploy Containers on Multiple Bridge Networks
Deploy Containers That Combine Bridge Networks with a Container Network
Deploy a Container with a Static IP Address

To perform certain networking operations on containers, your Docker environment and your virtual container hosts (VCHs) must be
configured in a specific way.

For information about the default Docker networks, see https://docs.docker.com/engine/userguide/networking/.
For information about the networking options with which vSphere administrators can deploy VCHs and examples, see Virtual
Container Host Networking in Install, Deploy, and Maintain the vSphere Integrated Containers Infrastructure.

NOTE: The default level of trust on VCH container networks is published . As a consequence, if the vSphere administrator did not
configure --container-network-firewall on the VCH, you must specify -p 80 in docker run and docker create commands to publish
port 80 on a container. Alternatively, the vSphere administrator can configure the VCH to set --container-network-firewall to a different
level.

Publish a Container Port
Connect a container to an external mapped port on the public network of the VCH:

 $ docker run -p 8080:80 --name test1 my_container my_app

Result: You can access Port 80 on test1 from the public network interface on the VCH at port 8080.

Add Containers to a New Bridge Network
Create a new non-default bridge network and set up two containers on the network. Verify that the containers can locate and
communicate with each other:

$ docker network create -d bridge my-bridge-network
$ docker network ls
...
NETWORK ID NAME DRIVER
615d565d498c my-bridge-network bridge
...
$ docker run -d --net=my-bridge-network \
 --name=server my_server_image server_app
$ docker run -it --name=client --net=my-bridge-network busybox
/ # ping server
PING server (172.18.0.2): 56 data bytes
64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.073 ms
64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.092 ms
64 bytes from 172.18.0.2: seq=2 ttl=64 time=0.088 ms

Result: The server and client containers can ping each other by name.

43

https://docs.docker.com/engine/userguide/networking/

Note: Containers created on the default bridge network don't get name resolution by default in the way described above. This is
consistent with docker bridge network behavior.

Bridged Containers with an Exposed Port
Connect two containers on a bridge network and set up one of the containers to publish a port via the VCH. Assume that server_app
binds to port 5000.

$ docker network create -d bridge my-bridge-network
$ docker network ls
...
NETWORK ID NAME DRIVER
615d565d498c my-bridge-network bridge
...
$ docker run -d -p 5000:5000 --net=my-bridge-network \
 --name=server my_server_image server_app
$ docker run -it --name=client --net=my-bridge-network busybox
/ # ping -c 3 server
PING server (172.18.0.2): 56 data bytes
64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.073 ms
64 bytes from 172.18.0.2: seq=1 ttl=64 time=0.092 ms
64 bytes from 172.18.0.2: seq=2 ttl=64 time=0.088 ms
/ # telnet server 5000
GET /

Hello world!Connection closed by foreign host
$ telnet vch_public_interface 5000
Trying 192.168.218.137...
Connected to 192.168.218.137.
Escape character is '^]'.
GET /

Hello world!Connection closed by foreign host.

Result: The server and client containers can ping each other by name. You can connect to server on port 5000 from the client
container and to port 5000 on the VCH public network.

Deploy Containers on Multiple Bridge Networks
You can use multiple bridge networks to isolate certain types of application network traffic. An example may be containers in a data
tier communicating on one network and containers on a web tier communicating on another. In order for this to work, at least one of
the containers needs to be on both networks.

Docker syntax does not allow for the use of multiple --net arguments for docker run or docker create , so to connect a container to
multiple networks, you need to use:

 docker network connect [network-id] [container-id]

Note: With VIC containers, networks can only be added to a container when it's in its created state. They can't be added while the
container is running.

Create two bridge networks, one for data traffic and one for web traffic

docker network create --internal bridge-db
docker network create bridge-web

Create and run the data container(s)

docker run -d --name db --net bridge-db myrepo/mydatabase

44

Create and run the web container(s) and make sure one is on both networks. Expose the web front end on port 8080 of the VCH.

docker create -d --name model --net bridge-db myrepo/web-model
docker network connect bridge-web web-model
docker start model
docker run -d -p 8080:80 --name view --net bridge-web myrepo/web-view

Result:

 db and web-view cannot communicate with each other
 web-model can communicate with both db and web-view
 web-view exposes a service on port 8080 of the VCH

Note: A container on multliple bridge networks will not get a distinct network interface for each network, rather it will get multiple IP
addresses on the same interface. Use ip addr to see the IP addresses.

Deploy Containers That Combine Bridge Networks with a Container
Network
A "container" network is a vSphere port group that a container can be connected to directly and which allows the container to have an
external identity on that network. This can be combined with one or more private bridge networks for intra-container traffic.

NOTE: Multiple bridge networks are backed by the same port group as the default bridge, segregated via IP address management.
Container networks are strongly isolated from all other networks.

A container network is specified when the VCH is installed using vic-machine --container-network [existing-port-group] and should be
visible when you run docker network ls from a docker client.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
baf6919f5721 ExternalNetwork external
fc41d9a86514 bridge bridge

The three main advantages of using a container network over exposing a port on the VCH are that:

1) The container can get its own external IP address. 2) The container is not dependent on the VCH control plane being up for
network connectivity. This allows the VCH to be powered down or upgraded with zero impact on the network connectivity of the
deployed container. 3) This avoids the use of NAT, which will benefit throughput performance

Let's take the above example with the web and data tiers and show how it could be achieved using a container network.

Create one private bridge network for data traffic

docker network create --internal bridge-db

Create and run the data container(s)

docker run -d --name db --net bridge-db myrepo/mydatabase

Create and run the web container(s) and make sure one is on both networks. In this example, we only want the web-view container
to have an identity on the ExternalNetwork, so the web-model container is only in the data network.

docker run -d --name model --net bridge-db myrepo/web-model
docker create -d -p 80 --name view --net bridge-db myrepo/web-view
docker network connect ExternalNetwork view
docker start view

45

Result:

All the containers can communicate with each other.
 db and web-model cannot communicate externally
 web-view has its own external IP address and its service is available on port 80 of that IP address

Note: Given that a container network manifests as a vNIC on the container VM, it has its own distinct network interface in the
container.

Deploy a Container with a Static IP Address
Deploy a container that has a static IP address on the container network. For you to be able to deploy containers with static IP
addresses, the vSphere administrator must have specified the --container-network-ip-range option when they deployed the VCH. The
IP address that you specify in docker network connect --ip must be within the specified range. If you do not specify --ip , the VCH
assigns an IP address from the range that the vSphere administrator specified in --container-network-ip-range .

$ docker network connect --ip ip_address container-net container1

Result: The container container1 runs with the specified IP address on the container-net network.

46

Creating Containerized Applications with vSphere Integrated
Containers Engine
The topics in this section provides guidelines for container developers who want to use vSphere Integrated Containers Engine to
develop and deploy a containerized application.

vSphere Integrated Containers is designed to help you get the best out of your vSphere infrastucture by adding a container
consumption model to it. That means that you can consume vSphere networks, storage and compute in a way that's familiar,
autonomous, scriptable, opinionated and portable. There are significant benefits to this approach and also limits to what you can
do.

This section will help you to understand the considerations, benefits and limits to putting containers into production with VIC engine.
It includes plenty of examples of common deployment scenarios, including using Docker Compose.

How to get the best out of vSphere Integrated Containers when putting containerized applications into production
Example of deploying a single container VM into production with vSphere Integrated Containers engine

Example of deploying multiple container VMs into production using Docker Compose

47

https://docs.docker.com/compose/

Putting Applications into Production with vSphere Integrated
Containers Engine
vSphere Integrated Containers engine is designed to be a docker API compatible production endpoint for containerized workloads.
As such, the design focus is on provisioning containerized applications with optimal isolation, security, data persistence, throughput
performance and to take advantage of vSphere capabilities.

vSphere Integrated Containers engine is designed to make existing features of vSphere easy to consume and exploit by providing
compatibilty with the Docker image format and Docker client. Inevitably that means that there are some differences between a
regular Docker host and a Virtual Container Host (VCH), and between a Linux container and a container VM. Some of those
differences are intentional design constraints, such as there being no such thing as a "privileged" container in VIC. Some are
because of a lack of functional completeness, while others are outside of the existing scope of the product, such as native support
for docker build .

There are other sections that discuss these topics in more depth, but this section is intented to help you to understand how to
maximize business value by understanding how the capabilities of the product map to production requirements.

Building Images for production

While official images on sites like Docker Hub are useful for showing how an application might be containerized, these images are
rarely suitable to put into production as is. Exploring how to customize images is outside of the scope of this document, but
important considerations include:

Anonymous volumes

You can specify a volume in a container image using the VOLUME keyword. However, this does not allow you to specify any
characteristics about the volumes. A VCH can have mutliple volume stores and a volume is a disk, so being able to specify an
appropriate volume store and the size of the disk is an important consideration.

Note also that a volume in vSphere Integrated Containers will have a /lost+found folder in it due to the ext4 filesystem and if your
application needs an empty folder, you should specify a sub directory in the volume. Eg.

 docker run -v mydisk:/mountpoint -e DATA_DIR=/mountpoint/data myimage

Exposing network ports

You can expose network ports in a Dockerfile using EXPOSE and leave it up to the container engine to define port mappings using
 docker run -P . There are a few considerations with this.

If you want to expose your container to other containers on a bridge network, you don't need to use EXPOSE. Your container will be
resolvable by name.

If you want your container to be externally accessible, VIC engine gives you the option to use an external container network rather
than port mapping. This is more robust and more performant because it doesn't depend on the container engine being available for
a network connection and it doesn't rely on NAT networking. Your container gets its own IP address on that container network.
Exposing your container on a container network cannot be specified in a Dockerfile.

If you want to use a port mapping on the VCH endpoint VM, it's rarely the case that you want the container engine to pick a random
port and again, that's not something that can be specified in the Dockerfile. Better to use docker run -p <external>:<internal> at
deployment.

Environment variables

Environment variables are a very useful way of setting both static and dynamic configuration. Use of Environment variables in a
Dockerfile should be considered static configuration as they will be the same on every deployment. Setting them on the command-
line allows for dynamic configuration and over-riding of static settings.

Ephemeral and Persistent State

48

The question of where a container stores its state is an important one. A container has an ephemeral filesystem and multiple
optional persistent volume mounts. Any writes to any part of the filesystem that is not a mounted volume is stored only until the
container is deleted.

When a regular Linux container is deployed into a VM, there are typically two types of filesystem in the guest OS. An overlay
filesystem manages the image data and stores ephemeral state. A volume will typically be another part of the guest filesystem
mounted into the container. As such it is also possible for Linux containers to have shared read/write access to the same filesystem
on the container host. This is useful in development, but potentially problematic in production as it forces containers to be tied to
each other and to a specific container host. That may well be by design in the case where multiple containers form a single service
and a single unit of scale. What's important however is to consider the scope, persistence and isolation of data when deploying
containerized applications.

Take a database container as an example. Its data almost certainly needs to be backed up, live beyond the lifecycle of the container
and not be mixed up with any other kind of data. The problem of peristing such state onto a container host filesystem is that it's
mixed in with other state and cannot easily be backed up, unless the host itself has a disk mounted specifically for that purpose.
There are volume drivers that can be used with Docker engine for this purpose. Eg. VMware Docker Volume Service

When you deploy a container to a VCH, ephemeral state is written to a delta disk (an ephemeral layer on top of the image layers)
and volumes are independently mounted disks which can only be mounted to one container at a time. When creating a volume, you
can specify the size of the disk and the volume store it gets deployed to. If you select a volume store backed by a shared datastore,
that volume will be available to any container anywhere in the vSphere cluster. This is particularly useful when it comes to the live
migration of stateful containers. The vSphere administrator will be responsible for backup policy associated with the datastore.

As such, VIC makes it easy to store persistent data to disks that are independent of VMs, can be written to shared datastores and
can participate in the same backup and security policies as regular VMs.

Note that an anonymous volume declared in a Dockerfile will manifest as a mounted disk of a default size (1GB) to a default
datastore. This is almost always going to be the wrong option in production for the reasons stated above.

You can use NFS to mount shared read-write volumes to container VMs.

Container Isolation

A container deployed to a VCH is strongly isolated by design. Strongly isolated means:

The container gets its own Linux kernel which is not used for any other purpose
The container gets its own filesystem and buffer cache which is not used for any other purpose
The container cannot get access to the container control plane or get information about any other containers
Privilege escalation or container breakouts in the conventional sense are not possible
The container operates independent of its control plane (assuming port mapping is not being used)
The container can take advantage of vSphere High Availability and vMotion

Network isolation is handled in a similar way to Docker, except that containers can be connected directly to vSphere port groups
(see container networks). Storage isolation is discussed above.

This kind of strong isolation is best suited to a container workload that is a long-running service. If the service fails, it should have no
impact on any other services. Examples of a long-running service are a database, web server, key-value store etc.

Containers are very flexible abstractions however and not every container is designed to be a single service. In fact, some
containers are designed to be combined to form a single service and a single unit of scale. This notion is sometimes described as
a Pod. In such a circumstance, it may be beneficial to run these as Linux containers in a single VM. VIC engine is providing built-in
support for this model of provisioning Linux container hosts as VIC containers in 1.2.

What's important is to consider the policy needs of your application in terms of isolation. Strong isolation is a very important
consideration in deploying robust applications into production and VIC makes it easy to turn that policy into plumbing.

49

https://vmware.github.io/docker-volume-vsphere

50

Building and Deploying Single Containers to a Virtual
Container Host
This section assumes that you already have a Virtual Container Host installed and that you are accessing it using TLS
authentication.

For simplicity, pre-built Docker images are demonstrated to illustrate principles of operation. It is assumed that in reality you will
have your own Docker images built.

This section will illustrate a number of useful capabilities such as pre-poluating data volumes, creating custom images and running
daemon processes.

Deploying a Database - Postgres 9.6

All databases will have common requirements. A database should almost always be strongly isolated and long-running, so is a
perfect candidate for a container VM. Steps to consider include:

1. Choose a volume store for your database state
2. Choose a size for your persistent volume
3. Choose a network for your container. Does it need to be exposed externally or privately to other containers?
4. How many CPUs and how much memory do you want for your database?

Note that the Dockerfile uses VOLUME and EXPOSE to illustrate that it needs to store persistent state and that you should be able to
reach it on a particular port. As discussed here, anonymous volumes and random port mappings are fine for a sandbox, but not for
production.

In this example, we create a 10GB volume disk on a backed up shared datastore. We'll use a private network to access the
database, assuming that another container will need to access it privately. We use environment variables to set the data directory
and password. We give the container a name so that it can be resolved using that name on the private network. Finally, we choose 2
vCPUs and 4GB of RAM.

docker network create datanet
docker volume create --opt Capacity=10G --opt VolumeStore=shared-backedup pgdata
docker run --name db -d -v pgdata:/var/lib/postgresql/data -e PGDATA=/var/lib/postgresql/data/data -e POSTGRES_PASSWORD=y7u8i9o0p --cpus 2
 -m 4g --net datanet postgres:9.6

Once the container has started, you can use docker ps to make sure it's running. You can use docker logs db to see the logs. You
can use docker exec -it db /bin/bash (only available in VIC 1.2+) to get a shell into the container.

Now let's check that it's visible on the private network and it's running correctly. We can do this using a VIC container running on the
same private network:

docker run --rm -it --net datanet postgres:9.6 /bin/bash
 $ ping db
 PING db (172.18.0.2): 56 data bytes
 64 bytes from 172.18.0.2: seq=0 ttl=64 time=0.856 ms
 ...
 $ pg_isready -h db
 db:5432 - accepting connections

If we stop and delete the container, the data volume will persist. It will even persist beyond the lifespan of the VCH unless vic-
machine delete --force is used.

Deploying an Application Server - Tomcat 9 with JRE 8

Looking at the Dockerfile here, there are no anonymous volumes specified. However, we need to consider how to get our
application deployed and we may want to set some JVM configuration.

51

https://github.com/docker-library/postgres/blob/972294a377463156c8d61297320c872fc7d370a9/9.6/Dockerfile
https://github.com/docker-library/tomcat/blob/1cb69781deeac97b2bb138054de3b2f35e9b49a0/9.0/jre8/Dockerfile

Let's start by deploying Tomcat on an external container network to make sure it works

docker run --name web -d -p 8080 -e JAVA_OPTS="-Djava.security.egd=file:/dev/./urandom" --net ExternalNetwork tomcat:9
docker logs web
docker inspect web | grep IPAddress
curl <external-ip>:8080

Hopefully an index.html showing Tomcat server running is shown. Of course you can also test this using a browser. Note that you
can pass JRE options in as an environment variable. In this case, we're passing in an option to get Tomcat to start faster by using a
non-blocking entropy source (see https://wiki.apache.org/tomcat/HowTo/FasterStartUp).

Next step is to consider how to get a webapp onto the application server. There are static and dynamic approaches to this problem.

Pre-populate a Volume

You can use a container to pre-populate a volume with a web application that you then bind when you run the application server. This
is a late-binding dynamic approach that has the advantage that the container image remains general-purpose. The downside is that
it requires an extra step to populate the volume.

docker volume create webapp
docker run --rm -v webapp:/data -w /data tomcat:9 curl -O https://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/sample.war
docker run --name web -d -p 8080 -e JAVA_OPTS="-Djava.security.egd=file:/dev/./urandom" -v webapp:/usr/local/tomcat/webapps --net External
Network tomcat:9
curl <external-ip>:8080/sample

The volume is a disk of default size, in this case 1GB. The command to populate the volume mounts it at /data and then tells the
container to use /data as the working directory. It then uses the fact that the Tomcat container has curl installed to download a
sample web app as a WAR file to the volume. When the volume is mounted to /usr/local/tomcat/webapps , it replaces any existing
webapps such as the welcome page and Tomcat runs just the sample app.

If you don't want the volume to completely replace the existing /webapps directory, you can modify the above example to extract the
WAR file to the volume and then mount the volume as a subdirectory of webapps.

docker volume create webapp
docker run --rm -v webapp:/data -w /data tomcat:9 /bin/bash -c "curl -O https://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/sample.war;
 unzip sample.war; rm sample.war"
docker run --name web -d -p 8080 -e JAVA_OPTS="-Djava.security.egd=file:/dev/./urandom" -v webapp:/usr/local/tomcat/webapps/sample --net E
xternalNetwork tomcat:9
curl <external-ip>:8080/sample

Note that running multiple commands on a container can be done using /bin/bash -c . There's a discussion below as to why this
isn't necessarily ideal for a running service, but for chaining simple commands together, it works fine. Now, not only is your sample
app available, but any other app baked into the image in /usr/local/tomcat/webapps is also available.

Build a custom image

Building a custom image allows you to copy the sample webapp into the container image filesystem and make some other
improvements and upgrades while you're there. This then creates a single purpose container that runs the webapp(s) baked into it.

Note that VIC engine does not have a native docker build capability. Containers should be built using docker engine and VIC engine
relies on the portability of the Docker image format to run them. In order to do this, the built image needs to be pushed to a registry
that the VCH can access. This is one reason why such a registry is built into the vSphere Integrated Containers product.

Dockerfile:

FROM tomcat:9

ENV JAVA_OPTS "-Djava.security.egd=file:/dev/./urandom"
COPY sample.war /usr/local/bin/webapps

52

https://wiki.apache.org/tomcat/HowTo/FasterStartUp

In a VM running standard docker engine:

docker build -t <registry-address>/<project>/<image name> .
docker login <registry-address>
docker push <registry-address>/<project>/<image name>

From a docker client attached to a VCH

docker run --name web -d -p 8080 --net ExternalNetwork <registry-address>/<project>/<image name>

Note that the use of the /dev/urandom above is not considered particularly secure as it doesn't address the underlying problem of
lack of entropy. One of the advantages of building a new image is that it can be customized, so for example, you can install the
haveged package to solve your entropy problem.

However, one of the interesting challenges of containers is that they're designed to only run one process and they don't have a
conventional init system. So installing haveged in a Dockerfile doesn't mean that it will actually run when deployed.

Let's examime some solutions to this problem

Running Daemon Processes in a VIC container

Although a VIC container is a VM, it is a very opinionated VM in that it has the same constraints as a container. It doesn't have a
conventional init system and its lifecycle is coupled to a single main process. There are a few ways of running daemon processes
in a container - many of which are far from ideal.

For example, simply chaining commands in a Dockerfile CMD instruction techically works, but it compromises the signal handling
and exit codes of the container. As a result, docker stop will almost certainly not work as intended. What would that look like in our
Tomcat example?

FROM tomcat:9

RUN apt-get update;apt-get install -y haveged
COPY sample.war /usr/local/bin/webapps
CMD /usr/sbin/haveged && catalina.sh run

So this is not a recommended approach. Try running docker stop and it will timeout and eventually kill the container. This is not a
problem exclusive to VIC engine, this is a general problem with container images.

A much simpler approach is to run haveged using docker exec once the container is started:

docker run --name web -d -p 8080 -v webapp:/usr/local/tomcat/webapps --net ExternalNetwork <registry-address>/<image name>
docker exec -d web /usr/sbin/haveged

Docker exec with the -d option runs a process as a daemon in the container. While this is arguably the neatest solution to the
problem, it does require a subsequent call to the container after it's started. While it's relatively simple to script this, it doesn't work
well in a scenario such as a Compose file.

So a third approach is to create a script that the container starts when it initializes that uses a trap handler to manage signals.

rc.local

#!/bin/bash

cleanup()
{
 kill $(pidof /docker-java-home/jre/bin/java)
}

trap cleanup EXIT

53

https://linux.die.net/man/8/haveged

/usr/sbin/haveget
catalina.sh run

Dockerfile

FROM tomcat:9

RUN apt-get update;apt-get install -y haveged
COPY sample.war /usr/local/bin/webapps
CMD ["/etc/rc.local"]
COPY rc.local /etc/

Deploying a Development Environment

You can use VIC to run a development environment that can be used either interactively or as a means of running builds or test
suites.

Let's look at some simple examples. Regardless of the approach, we'll need code mounted into the development environment. The
simplest way to achieve this is using a volume. Let's download the VIC repository onto a volume.

docker volume create vic-build
docker run --rm -v vic-build:/build -w /build golang:1.8 git clone https://github.com/vmware/vic.git

Interactive

The source code tree lives on the persistent volume and can be re-used across invocations of the development environment. The
command below will take you straight into a golang development environment shell.

docker run --rm -it -v vic-build:/go/src/github.com/vmware/ -w /go/src/github.com/vmware/vic golang:1.8

Running a Build

Let's build VIC using the volume created above. That's a simple matter of appropriately sizing the container VM and running make .

docker run --rm -m 4g -v vic-build:/go/src/github.com/vmware/ -w /go/src/github.com/vmware/vic golang:1.8 make all

The output of the build also lives on the volume. You need to ensure that the volume is big enough. VIC engine 1.2 will support NFS
volume mounts which could be a great alternative for the build source and output.

54

Building and Deploying Multi-Container Applications to a
Virtual Container Host
Having examined some of the considerations around deploying single containers to a Virtual Container Host (VCH), this section
examples how to deploy applications that are comprised of multiple containers.

There are two approaches you can take to this. The most instictive approach would be to create scripts that manage the lifecycle of
volumes, networks and containers.

The second approach is to use a manifest-based orchestrator such as Docker Compose. VIC 1.1 has some basic support for
Docker Compose, but it is not functionally complete. Docker Compose is a proprietary orchestrator that drives the Docker API and
ties other pieces of the Docker ecosystem together including Build and Swarm. Given that VIC engine doesn't currently support
either Build or Swarm, Compose compatibility is necessarily limited. However, Compose can still be a useful tool, provided those
limitations are understood.

Scripting Multi-Container Applications
Let's start by looking at how you would script Wordpress running in one container and a MySQL database in another. We can then
use some of the considerations and topics discussed and apply that to the Compose example later.

As with the single container examples, we need to consider:

1. What persistent state needs to be stored and where should it go?
2. How should the containers communicate with each other?
3. Does each container need to be strongly isolated?
4. How should each container be sized?

For this example, we're going to create two named volumes on different vSphere datastores. Database state is going to a persistent
volume on a shared datastore that's backed up and encrypted. The Wordpress HTML state is going to a shared datastore that's less
expensive.

We're going to create a private network for the database and expose the Wordpress container on a second network that exposes a
port on the VCH endpoint.

The Wordpress application server and the database container don't necessarily have to be separate failure domains, but one of the
advantages of VIC engine is that it makes it easy to deploy them that more secure way, so that's the approach we're taking here.

The question of sizing is a simple matter of setting virtual CPUs and memory on each container.

If we were to create a shell script to stand this up, it might look like this:

#!/bin/bash

DB_PASSWORD=wordpress
DB_USER=wordpress

WEB_CTR_NAME=web
DB_CTR_NAME=db

pull the images first
docker pull wordpress
docker pull mysql:5.7

create a persistent volume for the database
docker volume create --opt Capacity=4G --opt VolumeStore=backed-up-encrypted db-data
docker volume create --opt Capacity=2G --opt VolumeStore=default html-data

create a private network for the web container to talk to the database. This will fail if the network already exists.

55

docker network create --internal db-net
docker network create web-net

start the database container - specify a subdirectory on the volume as the data dir
docker run -d --name $DB_CTR_NAME --net db-net -v db-data:/var/lib/mysql --cpus 1 -m 2g -e MYSQL_ROOT_PASSWORD=somewordpress -e MYSQL_DATA
BASE=$DB_PASSWORD -e MYSQL_USER=$DB_USER -e MYSQL_PASSWORD=wordpress mysql:5.7 --datadir=/var/lib/mysql/data

start the web container - note it resolves the database container by name over db-net
docker create --name $WEB_CTR_NAME --net web-net -p 8080:80 -v html-data:/var/www/html --cpus 2 -m 4g -e WORDPRESS_DB_HOST=$DB_CTR_NAME:33
06 -e WORDPRESS_DB_USER=$DB_USER -e WORDPRESS_DB_PASSWORD=$DB_PASSWORD wordpress

docker network connect db-net $WEB_CTR_NAME

docker start $WEB_CTR_NAME

check that the containers are up and look at the IP address and port of the web container
docker ps | grep "$WEB_CTR_NAME\|$DB_CTR_NAME"

A second script to shut down the two containers and clean up everything might look like this:

#!/bin/bash

docker stop web db
docker rm web db

uncomment to delete volume state
docker volume rm db-data html-data

uncomment to delete networks
docker network rm db-net web-net

Blocking on Container Readiness

In the above example, the Wordpress container waits for about 10 seconds for the database to come up and be ready. What if it
needs to wait longer than that? This is one of the ways docker exec (coming in VIC 1.2) can be useful. For example:

wait until the database is up - VIC 1.2+
while true; do
 docker exec -it db mysqladmin --user=$DB_USER --password=$DB_PASSWORD version > /dev/null 2>&1
 if [$? -eq 0]; then
 break
 fi
 sleep 5
done

It's worth noting that the MySQL docker hub page states:

If there is no database initialized when the container starts, then a default database will be created.
While this is the expected behavior, this means that it will not accept incoming connections until such initialization completes.
This may cause issues when using automation tools, such as docker-compose, which start several containers simultaneously.

The user of docker exec is the quickest and simplest mechanism you can use to execute a binary in a running container and test its
return code. A cleaner solution might be to add your own custom script to the database image that blocks until the database is ready
and then call that using docker exec . This eliminates the need to call docker exec in a sleep loop.

If you want to modify the Wordpress image to add a database connection test, you would have to create a script that the container
will evoke that runs the test before running the main process and deals correctly with signal handling. See here for a discussion on
ways to achieve this.

Running Multi-Container Applications Using Docker Compose

56

https://hub.docker.com/_/mysql/
https://docs.docker.com/compose/startup-order/

Before we get into the topic of building applications for Docker Compose, let's look at an example of how we would run the
equivalent of the above script using Docker Compose and vSphere Integrated Containers engine.

Docker Compose serializes a manifest in a YML file which the docker-compose binary turns into docker commands. The equivalent of
the above script as a Compose file would be the following:

version: '2'

services:
 db:
 image: mysql:5.7
 command: --datadir=/var/lib/mysql/data
 volumes:
 - db-data:/var/lib/mysql
 networks:
 - db-net
 environment:
 MYSQL_ROOT_PASSWORD: somewordpress
 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress
 MYSQL_PASSWORD: wordpress

 wordpress:
 depends_on:
 - db
 image: wordpress:latest
 ports:
 - "8080:80"
 volumes:
 - html-data:/var/www/html
 networks:
 - web-net
 - db-net
 environment:
 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress
 WORDPRESS_DB_PASSWORD: wordpress

volumes:
 db-data:
 driver: "vsphere"
 driver_opts:
 Capacity: "4G"
 VolumeStore: "backed-up-encrypted"
 html-data:
 driver: "vsphere"
 driver_opts:
 Capacity: "2G"
 VolumeStore: "default"

networks:
 web-net:
 db-net:
 internal: true

Note that there is no way to run exec commands explicitly in a compose file, so any waits for dependent services to come up need
to be built into the containers themselves.

How to Manage the Application Lifecycle with docker-compose and
VIC engine
Assuming you've downloaded an appropriate version of the docker-compose binary, you need to point docker-compose at a VCH
endpoint. This is done either by setting DOCKER_HOST=<endpoint-ip>:<port> or using docker-compose -H <endpoint-ip>:<port> .

57

Dependencies between the compose file and vic-machine configuration

Given that the VCH lifecycle is handled by a vSphere administrator, there may be some named resources in the VCH that need to be
referenced in the Compose file. For example, in the Compose file above are the names of two volume stores. There may other
assumptions, such as the name of a container network for example. As a user, it's important to know how to get this information
from your VCH so that you can configure your Compose file appropriately.

To view a list of networks that have been pre-configured by the vSphere admin, use docker network ls and look for ones marked
 external .

To view a list of volume stores that have been pre-configured by the vSphere admin, use docker info | grep VolumeStores .

TLS Authentication

Assuming you're using TLS authentication to the Docker endpoint, that is either done using environment variables or command-line
options.

With environment variables, it's assumed that you've already set DOCKER_TLS_VERIFY=1 and DOCKER_CERT_PATH=<path to client certs> . This
is required in order to use the docker client. For docker-compose you have to additionally set COMPOSE_TLS_VERSION=TLSv1_2 . You can then
run docker-compose up -d to start the application (assuming you've also set DOCKER_HOST to point to the VCH endpoint).

Using command-line arguments with docker client is a little more clumsy as each key has to be specified independently and the
same is true of docker-compose . Regardless, the only way to specify the TLS version is through the environment variable above
 COMPOSE_TLS_VERSION=TLSv1_2 . You can then run docker-compose -H <endpoint-ip>:2376 --tlsverify --tlscacert="<local-ca-path>/ca.pem" --
tlscert="<local-ca-path>/cert.pem" --tlskey="<local-ca-path>/key.pem" compose up -d

Lifecycle Commands

The docker-compose binary is well documented and it is outside of the scope of this document to go into detail on that. However,
given the example given above, the following lifecycle commands work:

docker-compose pull # pull the required images
docker-compose up -d # start the application in the background
docker-compose logs # see the logs of the containers started
docker-compose images # list the images in use
docker-compose stop # cleanly stop the running containers, leave container state
docker-compose kill # force kill of the container processes
docker-compose start # restart the application
docker-compose down # stop the application and remove the resources, leaving persistent volumes and images
docker-compose down --volumes --rmi # stop the application and remove all resources including volumes and images

Building Multi-Container Applications Using Docker Compose
Given that VIC engine does not have a native build capability, it does not interpret the build keyword in a compose file and docker-
compose build will not work when DOCKER_HOST points to a VIC endpoint. VIC engine relies upon the portability of the docker image
format and it is expected that a regular docker engine will be used in a CI pipeline to build container images for test and
deployment.

There are two ways to work around this. You can create separate Compose files for build and run, or you can use the same
Compose file but just make sure to add a couple of arguments. We will explore both options here using another example of a
Compose file that includes build instructions. In this case, the sample voting application found here

Let's start by cloning the repository: git clone git@github.com:dockersamples/example-voting-app.git and we'll start by looking at docker-
compose-simple.yml .

Using separate Compose files

You can strip a Compose file down to an absolute minimum if you want to use it just for building and pushing images. If you want to
run the application on a VIC endpoint, you'll need to also push the built images to a docker registry visible to your VCH, so that they
can be deployed. In order to do that, we need to add image directives to the Compose file.

58

https://github.com/dockersamples/example-voting-app/blob/master/docker-compose-simple.yml

$ more docker-compose-simple-build.yml
version: "2"

services:
 vote:
 build: ./vote
 image: <registry-address>/<project>/vote:0.1

 worker:
 build: ./worker
 image: <registry-address>/<project>/worker:0.1

 result:
 build: ./result
 image: <registry-address>/<project>/result:0.1

$ sudo docker-compose -f docker-compose-simple-build.yml build
$ sudo docker login <registry>
$ sudo docker-compose -f docker-compose-simple-build.yml push

Now that the application is built and pushed, you need to create a second Compose file for deployment that reflects the deployment
considerations discussed earlier in terms of isolation, peristent volume state, networking etc. The Compose file provided in the
repo is simply an example and you would typically expect to have to change it to suit your needs. Let's do that, but keep it as simple
as possible to begin with.

Modifications from the original file are highlighted as comments

version: "2" # VIC engine supports Compose file version 2

services:
 vote:
 image: <registry-address>/<project>/vote:0.1 # Fully-qualified image name
 command: python app.py
 ports: # Local ./vote volume mount removed - use the app.py built-in
 - "5000:80"

 redis:
 image: redis:alpine
 ports: ["6379"]

 worker:
 image: <registry-address>/<project>/worker:0.1 # Fully-qualified image name

 db:
 image: postgres:9.4
 environment:
 PGDATA: /var/lib/postgresql/data/data # Added as a workaround to /lost+found in volume root

 result:
 image: <registry-address>/<project>/result:0.1 # Fully-qualified image name
 command: nodemon --debug server.js
 ports: # Local ./results volume mount removed - use the server.js built-in
 - "5001:80"
 - "5858:5858"

Let's review the changes that were made to this Compose file.

Fully qualified image name

In most real-world scenarios, container images will be pushed to a registry before they're deployed into production. That means that
the registry and a project will be part of the image name. The only way it will run with just the container name is if it has been built
locally.

Removed local volume mappings

59

Local volume mounts are useful for development and testing as they allow source trees and data to be easily mapped into a
container. In production however, making a container host stateful for the purpose of seeding the container with configuration or
application data is only feasible if the container is guaranteed to be deployed to the stateful host. In general, best practice is to keep
a container host as stateless as possible.

VIC engine cannot map volumes from a local filesystem into a container because VIC engine containers are strongly isolated and
don't share a common filesystem. Despite this, it is still possible in VIC to add state to a container by pre-populating a volume with
data and mounting it (TBD: link to "Pre-populate a Volume").

Workaround to /lost+found folder

In VIC a Volume is an ext4 formatted disk. As such, it has /lost+found in the root. Some containers will not write data into this
directory due to the presence of this folder, so in this case of postgres above, it is configured to create and write to a subdirectory of
the mount point.

Combining into a single Compose file

If separate Compose files feels clunky, it's quite possible to build, push and run from the same Compose file. All we need to do is to
merge them together and then make sure we tell docker-compose what we want. Here's an example of a merged file:

version: "2"

services:
 vote:
 build: ./vote
 image: <registry-address>/<project>/vote:0.1
 command: python app.py
 ports:
 - "5000:80"

 redis:
 image: redis:alpine
 ports: ["6379"]

 worker:
 build: ./worker
 image: <registry-address>/<project>/worker:0.1

 db:
 image: postgres:9.4
 environment:
 PGDATA: /var/lib/postgresql/data/data

 result:
 build: ./result
 image: <registry-address>/<project>/result:0.1
 command: nodemon --debug server.js
 ports:
 - "5001:80"
 - "5858:5858"

Build and push work in just the same way as the previous example. The rest of the directives are ignored.

In order to deploy this to a VIC endpoint however, you need to first explicitly pull the images. Otherwise docker-compose will try to
build them, even if you attempt to run with --no-build . Then you run the Compose file with --no-build to tell docker-compose to
ignore the build directives.

$ sudo docker-compose -f docker-compose-simple-vic.yml build
$ sudo docker-compose -f docker-compose-simple-vic.yml push
$ docker-compose -f docker-compose-simple-vic.yml pull
$ docker-compose -f docker-compose-simple-vic.yml up --no-build -d

60

In the example above, the use of sudo creates a child shell that runs a local docker engine and bypasses the environment variables
configured to make docker-compose talk to a VIC endpoint. In this way, it's possible to do a build, push, pull and run from the same
shell using the same client.

A Summary on Compatibility
Given that VIC is designed to be an enterprise runtime and has unique isolation characteristics applied to the containers it deploys,
a Docker Compose script downloaded from the web may not work without modification.

This is partly a question of functional completeness of VIC engine docker API support and partly a question of its inherent design.
There are some highly detailed technical sections in the documentation highlighting all of the capabilities VIC engine currently
supports, but here is a high-level summary of topics discussed in more detail above:

VIC engine supports version 2 of the Compose File format.
VIC engine has no native build support.
VIC volumes are disks and when mounted, have a /lost+found folder created by ext4. For some containers - databases in
particular - you will need to configure them to use a subdirectory of the volume. See MySQL example above.
VIC containers take time to boot and thus may exhibit timing related issues. Eg. You may need to set COMPOSE_HTTP_TIMEOUT to a
higher value than the default.
VIC containers have no notion of local read-write shared storage.

One of the main reasons this section takes you through all the considerations of putting a multi-container application into production
with the Docker client prior to introducing Docker Compose is to help you understand how to configure Compose to work with the
capabilities of VIC. Trying to work the opposite way around, by trying to configure VIC to work with capabilities of Compose may be
trickier for the reasons stated.

61

	Develop Container Apps
	Manage a Development Project
	Create New Networks for Provisioning Containers
	Provisioning Container VMs in the Management Portal

	Supported Docker Commands
	Supported Docker Compose File Options
	Supported Dockerfile Instructions

	Use and Limitations
	Obtain a VCH
	Configure the Docker Client
	Building and Pushing Images
	Add Certificate to Custom Image
	Manually Add Certificate
	Build, Push, and Pull and Image
	Advanced dch-photon Deployment

	Using Volumes
	Container Networking
	Creating a Containerized App
	Putting Apps into Production
	Deploy a Single Container VM
	Deploy Container VMs with Compose

